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ABSTRACT
We investigate the use of entropy-regularized optimal trans-
port (EOT) cost in developing generative models to learn im-
plicit distributions. Two generative models are proposed. One
uses EOT cost directly in an one-shot optimization problem
and the other uses EOT cost iteratively in an adversarial game.
The proposed generative models show improved performance
over contemporary models on scores of sample based test.
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1. INTRODUCTION

Data-driven learning of a probability distribution by a
generative model is an important problem in statistical signal
processing and machine learning. Recently neural network
based generative models are popular tools to study underly-
ing probability distribution of datasets. A prominent example
is generative adversarial network (GAN) [1], which learns
implicit distribution models.

In the GAN of [1], a generator produces synthetic sam-
ples and a discriminator endeavors to distinguish between real
samples and synthetic samples. Generators and discrimina-
tors are realized using (deep) neural networks. Discriminator
and generator play an adversary game against each other us-
ing a ‘min-max’ optimization to learn parameters of neural
networks. For generator, the game turns out be minimizing
Jensen-Shannon divergence (JSD) between target distribution
and induced distribution by generator when discriminator is
optimal. Using the same adversary optimization, deep convo-
lutional neural network based GAN (DCGAN) [2] producing
good quality synthetic images, has attracted high attention.

JSD has limitations in GANs where generators and dis-
criminators are based on deep neural networks. The first lim-
itation is that back propagation suffers from vanishing gradi-
ent. Gradient of cost function with respect to (w.r.t.) gener-
ator vanishes as discriminator approaches optimal (see Theo-
rem 2.4 [3]), which stops generator from further learning. The
second limitation is due to high sensitivity of JSD to slight
perturbations. JSD can be large between a distribution Px
and a distribution Px+ε where ε is perturbation [3].

Both limitations are addressed in Wasserstein GAN
(WGAN) [4]. Wasserstein distance stems from optimal trans-
port (OT) problem, which measures divergence between two

distributions. The WGAN formulation does not require an ex-
plicit discriminator and it does not has the vanishing-gradient
problem. Further, Wasserstein distance/OT is upper bounded
by the standard deviation of perturbation ε [3], addressing the
second limitation.

OT based cost in WGAN brings a strict constraint to fol-
low in its optimization. Kantorovich-Rubinstein duality used
in WGAN requires a supremum over infinite set of all Lips-
chitz functions with Lipschitz constant equal to one. Various
sub-optimal techniques are proposed to enforce the Lipschitz
property. An example is weight clipping [4] where neural net-
work parameters (weights) are updated first without Lipschitz
constraint and then projected to satisfy Lipschitz constraint in
each iteration. Other approaches are gradient penalty [5] and
spectrum normalization [6].

In this article, our main contribution is to explore use
of Entropy-regularized OT (EOT) cost for generative mod-
els. The EOT was studied earlier for efficient comparison be-
tween two probability distributions [7]. The major advantage
of EOT is that corresponding dual problem is free from Lips-
chitz constraint. Use of EOT improves analytical tractability
allows us to develop two generative models. Our first model
considers EOT cost directly on distribution of signals (in our
case, on the image pixels). This model uses an one-shot op-
timization problem, i.e. no use of adversarial game in itera-
tions. The second model considers EOT on feature distribu-
tion instead of direct signal distribution. In this case we also
need to learn a representation mapping, which is implemented
as a neural network. This requires alternative optimization
of representation mapping and generator. In addition to the
above advantage, duality of EOT can be effectively solved
and straightforwardly extended to parallel computation.

2. EOT BASED GENERATIVE MODELS

In this section, we begin with Entropy-regularized OT
(EOT) cost and then propose generative models.

2.1. Entropy-regularized OT

We denote our working space by (X , ‖ · ‖2) where X ⊂
Rd and ‖ · ‖2 is the Euclidean distance. Assume that X1, X2

areN -sample subsets ofX . Let P be a distribution onX1 and
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Q be a distribution on X2. OT calculates the minimum cost of
transporting distribution P to Q. We use W (P,Q) to denote
entropy-regularized OT (EOT) cost as follows:

W (P,Q) = min
π∈Π(P,Q)

〈π, M〉 − λH(π), (1)

where 〈·, ·〉 stands for the inner product of two matrices, and
Π(P,Q) is a set of joint distribution π on the sample sets
X1 × X2 such that π has marginal distributions P and Q.
The cost matrix M has elements [M ]i,j = d(x(i), y(j)) =
‖x(i)−y(j)‖22 and x(i), y(j) are samples of P,Q, respectively.
Here H(π) =

∑
i,j −πi,j log(πi,j) and λ ∈ R+ is the regu-

larization parameter. The entropy regularization in (1) trans-
lates to a requirement that the joint distribution π has a high
entropy. Note that ‖ · ‖2 is invariant of unitary transform and
hence representation of X in another unitary basis does not
change the cost matrix. The duality of EOT cost in (1) is

W (P,Q)= max
α,β∈RN

αTP+βTQ−
∑
i,j

λe
(α+β−[M]i,j)

λ , (2)

where α, β are dual variables and (·)T means transpose. The
optimal dual vector β∗ of (2) is a subgradient of W (P,Q)
with respect to Q. There is a computationally efficient al-
gorithm called Sinkhorn algorithm [7, 8] to solve (2), which
alternatively scales the rows and columns of matrix e−

M
λ .

This alternative computation gives a pair of vectors (u, v) ∈
RN+ ×RN+ that defines the optimal primary and dual variavles
(see proposition 2 in [8]):

π∗=diag(u)e
−M
λ diag(v), β∗=

log(uT )1N
Nλ

1N −
log(u)

λ
. (3)

where diag(u) is a matrix with diagonal entries from vector
u and 1N is a column vector with ones.

2.2. EOT based Generative Models

In this subsection, we propose two generative models. We
first develop an EOT based generative model handling sig-
nals/data directly. This models is referred to as EOT genera-
tive model (EOTGM). In our second model, we use a repre-
sentation mapping where EOT cost is used to optimize the
generative model and representation mapping jointly. The
second model is referred as EOT based GAN (EOTGAN).

2.2.1. EOT based generative model (EOTGM)

Assume that P is the unknown true probability distribu-
tion of a dataset and Q is a probability distribution induced
by a generator g : Z → X . Generator g usually is realized by
a neural network and maps latent signal Z ∈ Z to signal in
X , i.e., g(Z) ∈ X . Latent signal is assumed to follow a fixed
distribution Z ∼ PZ (PZ is usually assumed to be Gaussian).
The mapped signal g(Z) ∼ Q since g induces Q. Denote
the parameter of g by θ. Applying EOT cost to learn Q is
equivalent to minimizing W (P,Q) w.r.t. generator g:

argmin
g:Z→X

W (P,Q) = argmin
θ

W (P,Q). (4)

Since β∗ in (3) is subgradient of W (P,Q) w.r.t. Q, we are
able to optimize the generator g such that the induced distri-
bution Q approximates P , using gradient chain rule:

∇θW (Q,P ) = (∇θQ)
T
β∗. (5)

Alternatively the optimization problem (4) can be addressed
by solving argming〈π∗, M〉 iteratively using auto-gradient
functions in PyTorch [9] or TensorFlow [10], where π∗ is pri-
mary optimal variable to (1) given by (3). We propose Algo-
rithm 1 to learn distribution P via minimizing the EOT loss
w.r.t parameter θ of generator function g.

Algorithm 1 EOT based generative model (EOTGM)

Require: l: the update rate at each iteration, N : the batch
size, and θ0: the initial parameter for g.

1: while θ has not converged do
2: Sample

{
x(i)
}N
i=1
∼ P , a batch from a real dataset.

3: Sample
{
z(i)
}N
i=1
∼ Pz , a batch of noise samples.

4: Get
{
y(i)
}N
i=1

by passing
{
z(i)
}N
i=1

through g.
5: Calculate the cost matrix M .
6: π∗, β∗ ← primary and dual solutions of
W (
{
x(i)
}N
i=1

,
{
y(i)
}N
i=1

) according Equation (3).
7: θ ← θ− l (∇θQ)

T
β∗. (Or back propagate using loss

〈π∗, M〉)
8: end while

2.2.2. EOT based GAN (EOTGAN)

In this subsection, we consider representation learning
(feature learning) with which usage of EOT is more mean-
ingful than that directly in signal space. It is well-known that
Euclidean distance is not well suited to compare two multi-
media signals. For example, Euclidean distance between an
image and its rotated version can be large, but they are visu-
ally same. In Algorithm 1 we construct cost matrixM in EOT
using Euclidean distance between real signals and generated
signals. Our new proposal is to transform signal through a
representation mapping f : X →M,M⊂ Rm and we com-
pare features in the representation space via EOT. We assume
that Euclidean distance between features in the representation
space is more semantically meaningful. An element of the
cost matrix Mf in representation domain (feature domain) is:

df (x, y) = ‖f(x)− f(y)‖22. (6)

Our new objective is joint learning of generator g and rep-
resentation f . A natural question is how to construct f func-
tion? Inspired by the triplet loss in [11] aiming at larger dis-
tance between distinct classes than in-class distance, we may
consider two virtual classes labeled by P and Q. This means
that the representation function f should have the algebraic
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property: df (x, x̃) + γ 6 df (x, y) for γ > 0, where x and x̃
are two samples from distribution P and y is a generated sig-
nal from distribution Q. Meanwhile, g tries to mitigate this
distinction.

Following the above idea, let us denote the distribution of
f(x) and f(y) by Pf andQf , respectively. LetMf be the cost
matrix in representation domain and its elements [Mf ]i,j =
df (x(i), y(j)), x(i) ∼ P, y(j) ∼ Q. Then we learn f and g
using alternative optimization, as follows.

1. Learning of representation f is minimizing EOT cost

W (Pf , Pf ) = min
π̃∈Π(Pf ,Pf )

〈π̃, M̃f 〉 − λH(π̃), (7)

where [M̃f ]i,j = df (x(i), x̃(j)), x(i), x̃(j) ∼ P , and
minimizing EOT cost

W (Pf , Qf ) = min
π∈Π(Pf ,Qf )

〈π, Mf 〉 − λH(π). (8)

2. Learning of generator g is minimizing EOT cost

W (Pf , Qf ). (9)

Both W (Pf , Pf ) and W (Pf , Qf ) have lower bounds, but no
upper bounds. We combine the step 1 in above using a hinge
loss and define the following costs.

Lf (Pf , Qf ) , max(0,W(Pf , Pf )−W(Pf , Qf )+γ),

Lg(Pf , Qf ) ,W (Pf , Qf ),
(10)

where γ > 0. Hinge loss helps to balance the adversarial
training of the f and g. Note the our hinge adversarial loss
shares similarity only in form to the self-attention GAN [12]
and geometric GAN [13] but is motivated differently and de-
fined in different metric. We used neural networks for con-
structing f and g functions. Let us assume that the parame-
ters of f and g are ω and θ, respectively. Then the adversarial
training between representation f and generator g is the fol-
lowing alternative optimization problem:

minf Lf (Pf , Qf ) = minω Lf (Pf , Qf ),
ming Lg(Pf , Qf ) = minθ Lg(Pf , Qf ).

(11)

The EOTGAN is shown in Algorithm 2.

2.2.3. Advantage of EOT against OT

Usage of entropy regularization in EOT avoids the need
for Kantorovich-Rubinstein duality of OT, thus is free from
Lipschitz constraint. In literature, several methods endeavor
to satisfy Lipschitz constraint, for example, projecting neural
network parameters into a space fulfilling Lipschitz con-
straint via weight clipping [4], spectrum normalization [6]),
or adding gradient penalty into GAN’s cost function [5].
Projecting approaches bring the problem of neural network
capacity underuse and limit its ability to learn complex map-
ping. Gradient penalty approach takes gradients of each
layer’s weight parameters of a neural network into GAN’s
cost, thus computation complexity grows fast as the neu-
ral network goes deeper. EOT avoids the above mentioned

Algorithm 2 EOT based GAN (EOTGAN)

Require: l: the update rate at each iteration, N : the batch
size and θ0, ω0: the initial parameters for g and f .

1: while θ has not converged do
2: Sample two batches of data

{
x(i)
}N
i=1

,
{
x̃(i)
}N
i=1

,

and latent samples
{
z(i)
}N
i=1

, x(i), x̃(i) ∼ P, z ∼ Pz .

3: Get
{
y(i)
}N
i=1

by passing
{
z(i)
}N
i=1

through g.

4: π̃∗ ← solving Wf

({
f(x(i))

}N
i=1

,
{
f(x̃(i))

}N
i=1

)
5: π∗ ← sovling Wf

({
f(x(i))

}N
i=1

,
{
f(y(i))

}N
i=1

)
6: ∂f ← ∇ω max

(
0, 〈π̃∗, M̃〉 − 〈π∗, M〉+ γ

)
7: ω ← ω − l · ∂f
8: Sample

{
z(i)
}N
i=1

and get
{
y(i)
}N
i=1

via g.

9: π∗ ← sovling Wf

({
f(x(i))

}N
i=1

,
{
f(y(i))

}N
i=1

)
10: ∂g ← ∇θ〈π∗, M〉
11: θ ← θ − l · ∂g
12: end while
problems and also has the benefit of a lower computation
complexity. With entropy-regularization and Sinkhorn algo-
rithm, the computation complexity scales as O(N2) [7]. On
the other hand, solving OT cost using interior-point methods
has computational requirement as O(N3 logN).

3. EXPERIMENTAL RESULTS

We perform experiments to justify our arguments on loss
choice and algorithms. We evaluate our generative models on
a toy synthetic dataset of Gaussian-mixture distribution and
real image digit dataset MNIST.

3.1. Evaluation Metrics

Inception Score (IS) has been popularly used in eval-
uation of GAN models [14]. IS is defined as IS(Q) =
exp
[
Ey∼QKL

(
P(c|y)‖P(c)

)]
, where x ∼ Q indicates syn-

thetic sample from distribution Q induced by generator g,
KL(·, ·) is Kullback-Leibler divergence, P(c|y) is the con-
ditional class distribution, and P(y) =

∫
x
P(c|y) dQ(x) is

the marginal class distribution. Large IS score means gener-
ated samples contain clear objects. Generative models with
high IS can output high diversity of samples. Apart from
KL-based metric, an alternative common metric is Frechet
Inception Distance (FID) [15]. FID measures the OT distance
of two probability distribution by assuming the two distribu-
tions are Gaussian. Smaller FID means the generated samples
are more similar to empirical samples. Both FID and IS will
be used in our experiments. High IS and low FID are better.

3.2. Evauation of EOTGM using toy dataset

We firstly evaluate our proposed EOTGM on a toy
dataset sampled from a known probability distribution: two-
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Fig. 1. (a) Toy distribution learning (4-mixture Gaussians) using EOTGM. Real samples (red ’+’) and contour (red curve),
versus generated samples (blue ’o’) and contour (blue curve) by g. (b) Generated samples by EOTGAN for MNIST dataset. (c)
and (d) Comparison of IS and FID (on MNIST) versus mixing ratio r. (For each model at a certain mixture ratio, 5 experiments
are independently performed. Each solid curve with markers plots the mean of 5 experiments with shaded areas denoting the
range of corresponding results.

dimensional four-mixture Gaussian. This mixture Gaussian is
our target distribution to learn, i.e., P . The generator g uses a
neural network with structure: Input→ Dense 256→ ReLU
→ Dense 256 → ReLU → Dense 256 → ReLU→Dense 2.
The parameter θ of g here is the set of parameters of this
neural network. Latent distribution PZ used here is standard
Gaussian: N

((
0
0

)
,
(

1 0
0 1

))
. The toy dataset is used by Algo-

rithm 1 (EOTGM) to train g. In Fig.1a, we plot the empirical
samples from our toy dataset and the synthetic samples gen-
erated by g. The corresponding contours are also plotted. It
shows that the induced distribution by g approaches the mix-
ture Gaussian distribution well without missing any mode.

3.3. Evaluation of generative models using MNIST

In this subsection we evaluate both the generative models
using MNIST dataset. The representation mapping f in EOT-
GAN adapts two converlutional layers appended with fully
connected layers1 similar to [16] [17]. Generator g uses the
same setting as that of DCGAN and WGAN. Noise Pz is
100-dimensional Guassian. We report IS and FID scores of
EOTGAN in comparison with DCGAN and WGAN. Since
EOTGAN is trained with representation mapping f that acts
as feature mapping, it is not fair to use this representation
mapping f to do the evaluation and make comparison since it
would gives EOTGAN advantages. Similar to [18], we train
a 34-layer ResNet on MNIST to perform feature extraction
for metric measurements of IS and FID. In addition, we put
EOTGM (Algorithm 1) in the comparison as well.

Data for evaluations is constructed by mixing empirical
samples and synthetic samples generated by g. We draw the
set Sem of 2000 empirical samples from MNIST dataset. To
generate a set Ssyn of synthetic samples we draw 2000r sam-
ples from the generator network g where r ∈ [0, 1] while rest
2000(1− r) are sampled directly from MNIST. All following
experiments are applied on Sem and Ssyn. The way of mix-
ing empirical data and generated data helps us to identify if a

132 Conv2d 5 × 5→ PReLU→ MaxPool 2 × 2→ 64 Conv2d 5 × 5
→ PReLU→ MaxPool 2 × 2→ Dense 256→ PReLU→ Dense 256→
PReLU→ Dense 2

metric is intuitively helpful. Among the chosen metrics IS at
r = 0 serves as a upper bound for the test while the FID at
r = 0 serves as a lower bound for the corresponding tests.

IS measures how certain a classifier assigns a class label
to a given generated sample. The larger IS is, the better the
generative model is. We plot IS versus r for different mod-
els in Fig. 1c. IS scores of all four tested models drop with
increasing portion of synthetic samples in Ssyn, which is con-
sistent with intuition. IS of EOTGAN drops at the slowest rate
among the four model as more synthetic samples, for larger
r, are mixed into test data. It shows that EOTGAN outper-
forms WGAN and DCGAN in this test. EOTGM is found to
provide the lowest IS. This may be attributed to the setup that
EOT optimization with cost measured by Euclidean distance
of signals fails to capture semantic similarity.

In Fig. 1d the perfomances of different models are com-
pared using the FID metric. The smaller the FID of a gener-
ative model is, the more similar the generated samples are to
the empirical samples. EOTGAN is the least affected model
among all the four, as the ratio r increases, i.e. the generated
samples by EOTGAN is more similar to the empirical ones in
the feature space regarding to FID. FID of WGAN is larger
than that of EOTGAN. As more generated samples are mixed
the FIDs of DCGAN and EOTGM grow even faster, which
means the samples generated by these two models are less
similar to the empirical samples.

4. CONCLUSION

This work shows that entropy-regularized optimal trans-
port cost is useful to train neural network based generative
models for learning implicit probability distributions. With
computationally efficient Sinkhorn algorithm, learning of a
probability distribution by a generative model can be posed
as an one-shot optimization problem. For further progress
in quality of generating samples, our experiments show that
additional use of representation mapping and alternative opti-
mization based on adversarial game produce better semantic
samples.
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