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ABSTRACT

We present a new method for boundary detection within
sequential data using compression-based analytics. Our ap-
proach is to approximate the information distance between
two adjacent sliding windows within the sequence. Large
values in the distance metric are indicative of boundary lo-
cations. A new algorithm is developed, referred to as sliding
information distance (SLID), that provides a fast, accurate,
and robust approximation to the normalized information dis-
tance. A modified smoothed z-score algorithm is used to
locate peaks in the distance metric, indicating boundary loca-
tions. A variety of data sources are considered, including text
and audio, to demonstrate the efficacy of our approach.

Index Terms— Signal processing, Machine learning,
Change detection, Information distance, Peak finding

1. INTRODUCTION

Let z be a sequence of tokens made available over time. This
general class of data is prevalent in, for example, computer
network traffic, text, and audio signals. Identifying structure
in z requires significant latency and domain knowledge of the
underlying data. Our objective herein is to develop a gen-
eral, unsupervised approach for determining locations within
z where the information content suddenly and substantially
changes; we refer to these locations as structural boundaries.

The normalized information distance (NID) is the optimal
universal distance metric to capture the differences between
two sequences [1]. It is, however, non-computable. We seek
a method that provides an accurate approximation to the NID
but is also computationally efficient; the latter is necessary
due to the nature of our sliding application, where changes
in information content need to be approximated repeatedly as
we progress through z. Further, we require our method to be
robust to small changes in information content; an algorithm
that violates this requirement will produce a noisy signal that
renders boundary detection difficult.

We propose a new algorithm, referred to as sliding infor-
mation distance (SLID), that provides a fast, accurate, and
robust approximation to the NID. When combined with a
smoothed z-score algorithm for peak finding, this approach
provides a new method for boundary detection within se-
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quential data. Although other approaches may perform bet-
ter for specialized applications where domain knowledge is
available, our approach is general and applicable to a wide
variety of data sources. Further, it is possible to extend these
concepts to streaming applications or to datasets in higher
dimensions, e.g., edge detection in images and flaw detection
in engineering materials.

2. PREVIOUS WORK

We provide a brief overview of existing boundary detection
techniques on time-series data. Our focus is on unsuper-
vised approaches that do not require training data. General
boundary or change-point detection often involves sliding
adjacent windows over time series data, collecting statistics
of the underlying data within each window, and computing
a distance function that operates on the statistics to deter-
mine large distances between adjacent windows [2, 3, 4]. For
domain-specific data, such as audio, specialized methods can
also be used.

To the best of our knowledge, a specialized information-
theoretic distance metric for boundary or change-point de-
tection does not exist. However, there has been extensive
work on approximating the NID, most of which are based
on the normalized compression distance (NCD) [6]. NCD
uses standard compression algorithms and is therefore easy
to implement in practice, but is too costly for a sliding appli-
cation. It has been shown that NCD can be approximated by
operations on the underlying dictionaries, thereby bypassing
the compression step and improving the computation speed
[7, 8,9, 10, 11]. SLID is a variant of these methods, where
the dictionary construction has been further optimized for a
sliding boundary detection application. Although we could
have chosen to modify any of these methods, SLID builds off
the Lempel Ziv Jaccard Distance (LZJD) [11] due to the sim-
plicity of the Jaccard index as the distance metric.

3. METHODS

3.1. Sliding information distance (SLID)

Let k denote a position within the sequence z. We formulate
the boundary detection problem by considering two adjacent
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subsequences of z, denoted by xj and yy, each of length w >
1:

20+ Rk—w—1 Rk—w +++-Rk—1 Rk +++ Rk+w—1Rk+w - - - +

Tk Yr
We denote the SLID score of z at position £ = w, ... by

[D(xx) 0 D(yg)|
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where D(x) denotes a set representation of the Lempel-Ziv
(LZ) [12] dictionary encoding of sequence x. The right hand
side of Eq. (1) is the Jaccard distance between two LZ sets,
and S, takes values in [0, 1].

Algorithm 1 Sliding information distance.

1: function SLID(sequence z, window size w)

2: S« [0] > list initialized with w — 1 zeros.
3: for k =w,...do

4 Tl < Zh—wy -+ Rk—1

S: Yk < Zky vy Rhtw—1

6: if £ == w then

7 Lx, Dx < makeLZdict(xy)

8 Ly, Dy < makeLZdict(ys)

9: else
10: Lz, Dx < updateLZdict(zy[—1], Lx)
11: Ly, Dy + updateLZdict(yx[—1], Ly)
12: end if
13: S.append(1 — |Dz N Dy|/|Dx U Dy|)

14: end for
15: return .S

16: end function

Algorithm 2 Initialize the LZ dictionary.
1: function MAKELZDICT(sequence b)
2: £« [], start + 0, end + 0

3 while end < |b| do

4 item < b[start : end]

5 if item ¢ ¢ then

6: start < end

7

8

9

end if
£.append(item)
end < end + 1
10: end while
11: return ¢, set({)
12: end function

Algorithm 1 presents the main computation of SLID. At
initial position k = w, the first step is to apply Algorithm 2
to compute the ordered LZ list of subsequences for each to-
ken in z,, and y,,, followed by the Jaccard distance of the set
representation of the LZ list. We maintain the state of the or-
dered LZ list, and not simply the set, so that when the position

Algorithm 3 Update the LZ dictionary.
1: function UPDATELZDICT(token ¢, list £)

2: if ([—1] ¢ ¢[0 : —2] then
3: item <— ¢

4: else

5: item « ¢[—1] + ¢

6: end if

7: L+ 1]

8: £.append(item)

9: return ¢, set({)

10: end function

is progressed to k = w + 1, we can update the LZ list accord-
ing to Algorithm 3. Here, instead of recomputing the LZ sets
of z,41 and Y41, we drop the first entry in the LZ list and
append a new entry for the last token in the new subsequence.
Once again, 5,11 operates on the set representation of the
updated LZ lists.

Applying Algorithm 3 to update the LZ list has two ben-
efits. First, the computational cost of Algorithm 2 is at least
O(w) as each token in the subsequence of length w has to
be parsed. This cost is O(1) for Algorithm 3. Second, the
updating step ensures smaller changes in the LZ set over re-
computing them; this results in a smoother SLID score for
boundary detection.

3.2. Boundary detection

As SLID is being computed for a given sequence, the bound-
ary locations can be estimated by identifying anomalous peak
regions in SLID. We apply the smoothed z-score algorithm
[13], an unsupervised change detection algorithm, to locate
these peak regions. Briefly, the algorithm identifies a point as
anomalous if it exceeds a threshold of n standard deviations
over a running mean of the previous m data points; we choose
n = 2 and m = 64. Anomalous points are assigned an in-
fluence of 0.001 (see [13] for details on the influence). We
define K, a set of contiguous anomalous positions, as a peak
region for which a boundary exists.

We execute the smoothed z-score algorithm in the se-
quence, in the directions of increasing (forward) and decreas-
ing (reverse) k to produce a collection of contiguous anoma-
lous positions, denoted by sets Ky and K., respectively. We
define the peak region by K = Ky N K,.. Assuming K is a
nonempty set of contiguous positions,

k* = argmax Sk (z; w) 2)
keK

is our estimate for the boundary location k£* in K. For perfor-
mance assessment, we assume that boundary estimates that
are within 16 tokens of the true boundary are true positives.
Further, we require that | K| > 16 to reduce false positives. In
practice, this algorithm will produce a collection of K, each
containing a boundary.
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Fig. 1. Boundary detection using NCD, SLID, and LZJD on
written text with a sliding window of width w = 512 (blue)
and the peak-finding algorithm. SLID using w = 256 (green)
is also shown for comparison.

Table 1. Time, noisiness (o), and correlation with NCD for
the results presented in Fig. 1.

Time (seconds) o NCD Correlation
NCD 1100 0.0019 1.00
SLID 0.2 0.0016 0.78
LZID 3.6 0.0123 0.77
4. DATA

To validate our algorithm against multiple data sets, we syn-
thesize sequences with known ground truth for boundaries us-
ing multiple data sources. Our first data set contains sections
of text randomly selected from English and Spanish transla-
tions of a United Nations (UN) document [14]. A second
data set contains sections of audio randomly selected from a
male and a female speaker from the LibriSpeech ASR corpus
[15, 16]. Each data set contains 100 ground truth boundaries
with section lengths s = 512 tokens for quantifying algorith-
mic performance and computing precision-recall curves.

5. RESULTS

We begin by presenting results on identifying language
boundaries in UN documents using NCD, SLID, and LZJD,
another dictionary-based distance metric not optimized for
a sliding boundary detection [11]. Although we use PP-
MAC [17] as the compressor for NCD, we note that we have
tried alternative fast compression algorithms and observed a
decrease in the performance of NCD.
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029 — 1ZID (AP =0.24)
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Fig. 2. Precision-recall (P-R) curves for the UN document
data set.

Figure 1 shows boundary detection results for each
method using a window width w = 512. The positions
of true boundaries are denoted by the vertical dashed red
lines. As mentioned in Section 4, every multiple of s = 512
is a true boundary. The shaded red regions indicate the sets K
defined by Eq. (2) for which the smoothed z-score algorithm
indicates anomalous positions, and the vertical blue lines
indicate k*, the boundaries identified within K. Thus any
instance of a blue line corresponding with a red dashed line is
a true positive; any instance of a blue line not corresponding
to a red-dashed line is a false positive.

By visual inspection of Fig. 1, all compression-based dis-
tance metrics provide some indication of boundaries, as in-
dicated by peaks in the score near (or at) a true boundary.
Although we have selected a window size w equal to the sec-
tion length s, we also show SLID results using a window size
w = 256 (green) to demonstrate that our method successfully
produces peaks over a range of window sizes. Future work
will involve extending SLID to automatically determine the
optimal window size.

Table 1 summarizes the performance of each method with
respect to the three qualities we desire in a boundary detection
scheme: (1) efficiency, (2) smoothness, or robustness to small
changes in information content, and (3) the ability to accu-
rately approximate the NID. Both LZJD and SLID run three
and four orders of magnitude, respectively, faster than NCD,
and are still accurate approximations for the NID, as quanti-
fied by the correlation coefficient with the NCD. Further, let
0 = d(k) —d(k — 1) for k = w, ..., where we use d(k) to
denote a general distance metric at location & in the sequence.
SLID yields a much smaller standard deviation, o, in §; com-
pared to LZJD, indicating a smoother signal. As shown qual-
itatively in Fig. 1, a noisy LZJD (lower panel) produces sev-
eral false positives, whereas SLID (middle panel) produces a
notably smoother score for improved boundary detection.

To assess performance, Fig. 2 presents a precision recall
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Fig. 3. Boundary detection using SLID, 8-gram, and nov-
elty score on audio files with a sliding window of width
w = 512(x8).

(PR) graph with average precision (AP) scores. These results
are obtained from the full dataset constructed from 100 seg-
ments of length s = 512 chosen from the two translations of
the UN document. NCD outperforms all other metrics but is
extremely slow; SLID significantly outperforms LZJD (com-
pare AP = 0.44 with AP = 0.21). As discussed above, this
result can primarily be attributed to the smoother signal for
SLID and therefore far fewer false positives.

For comparison to more traditional text-based methods,
Fig. 2 also presents results for the cosine distance over ad-
jacent sliding windows of n-gram distributions. The 3-gram
distance, which is commonly used to describe written lan-
guage [18], performs as well as NCD. In contrast, the 1-gram
distance cannot capture the full complexities of the structural
differences between Spanish and English text, and the 5-gram
distance cannot capture the statistical distribution within the
sliding window of width w = 512. If the underlying data
can be well-described by an n-gram, as is the case with
text, then it is not surprising that an n-gram approach (with
the appropriate n) can outperform a general compression-
based method. However, in general, some knowledge of
the underlying data is needed to select the optimal n-gram;
compression-based methods are a good choice where there is
no such knowledge.

Finally, we apply SLID to an audio dataset for which we
do not expect an n-gram to be the appropriate description of
the underlying data. In Fig. 3, we present results for SLID,
together with an n-gram approach and a specialized method
developed to detect novelty in audio data [5]. Red dashed
lines correspond to true boundaries and blue lines correspond
to estimates k* as defined in Eq. 2. Because each floating
point value of the audio file is represented by eight bytes, the
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Fig. 4. Precision-recall (P-R) curves for the audio data set.

horizontal axes of SLID and the 8-gram are eight times the
scale of the novelty score, which is computed using floating
point values. By Fig. 3, we observe that the peaks produced
by SLID are more pronounced at the true boundaries than
the peaks produced by the 8-gram approach. Furthermore,
there are fewer false positives, particularly when compared
with the novelty score, where the latter seems to measure lo-
cal changes in a given frequency. As a result, the PR curve in
Fig. 4 shows that SLID outperforms both the n-gram and the
novelty methods.

6. CONCLUSIONS

We have presented a fast, efficient, and robust compression-
based method for detecting boundaries in arbitrary sequences
of data, including data streams. We have demonstrated the
versatility of our approach through several experiments on
multiple data sources. As our method is computationally ef-
ficient, it is possible to apply different window sizes to ob-
tain a multi-scale structural representation of the underlying
data source for boundary detection. This could lead to fur-
ther improved detection performance or provide the ability to
identify coarse and fine-grained boundaries. We defer inves-
tigating this problem to our future work.

This paper describes objective technical results and analy-
sis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the
U.S. Department of Energy or the United States Govern-
ment. Supported by the Laboratory Directed Research and
Development program at Sandia National Laboratories, a
multi-mission laboratory managed and operated by National
Technology and Engineering Solutions of Sandia, LLC, a
wholly owned subsidiary of Honeywell International, Inc., for
the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-NA0003525. SAND2019-
1500 C.
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