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ABSTRACT
With explosion of data size and limited storage space at a sin-
gle location, data are often distributed at different locations.
We thus face the challenge of performing large-scale machine
learning from these distributed data through communication
networks. In this paper, we generalize the distributed dual
coordinate ascent in a star network to a general tree struc-
tured network, and provide the convergence rate analysis of
the general distributed dual coordinate ascent. In numerical
experiments, we demonstrate that the performance of the dis-
tributed dual coordinate ascent in a tree network can outper-
form that of the distributed dual coordinate ascent in a star
network when a network has a lot of communication delays
between the center node and its direct child nodes.

Index Terms— gradient descent, machine learning, dis-
tributed system, dual coordinate ascent, big data

1. INTRODUCTION
In modern society, the amount of data that we can access and
learn information from is skyrocketing due to the abundance
of sensors. This propels our society into an era of big data [1].
However, data are very often collected and stored at different
locations, due to the constraints of limited storage volumes
and network communication bandwidths. This necessitates
performing machine learning in a distributed manner.

In order to answer the challenge of distributed data, re-
searchers have studied various optimization methods such as
synchronous Stochastic Gradient Decent (SGD) [2, 3], syn-
chronous Stochastic Dual Coordinate Ascent (SDCA) [4–6],
asynchronous SGD [7, 8], and asynchronous SDCA [9, 10].
Even though the convergence of SGD does not depend on the
size of data, it is reported in [11] that SDCA can outperform
SGD when we need relatively high solution accuracy. Fur-
thermore, asynchronous updating scheme can suffer from the
conflicts between intermediate results.

Motivated by these facts, the authors in [4–6] considered
a synchronous distributed dual coordinate ascent for solving
regularized loss minimization problems in a star network. In
this star network, data are distributed over a few local work-
ers, which can individually communicate with a central sta-
tion. In [4–6], the authors derived the convergence rate of the
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distributed dual coordinate ascent with respect to the number
of iterations. The proposed distributed optimization frame-
work in [5, 6] is free of tuning parameters or learning rates,
compared with SGD-based methods. Moreover, the duality
gap in [5, 6] readily provides a fair stopping criterion and ef-
ficient accuracy certificates.

However, practical communication networks are not al-
ways organized in a star network, but sometimes in very dif-
ferent network topologies. It is unclear how to design and
analyze dual coordinate ascent algorithms for a network with
general topologies. In addition, it is unknown how network
communication delays (not merely the number of communi-
cation rounds) will affect the design and convergence rate of
distributed dual coordinate ascent algorithms [4–6]. We re-
mark that, in [12], the authors considered communication de-
lays and provided the convergence bound in terms of time for
consensus based distributed optimization.

In this paper, we generalize the previous research [4–6]
on the distributed dual coordinate ascent in a star network.
Especially, we consider the design of the distributed dual co-
ordinate ascent algorithms for regularized loss minimization,
in a general tree structured network. And then, we provide the
convergence rate analysis of the general distributed dual coor-
dinate ascent in the considered tree network. In the numerical
experiments, we demonstrate that when the communication
delays between the center node and its direct child nodes are
large, the generalized distributed dual coordinate ascent in a
tree network can have better convergence speed than that in a
star network.

Notations: We use [k] to denote the index set of the co-
ordinates in the k-th coordinate block. For an index set Q,
Q and ∣Q∣ represent the complement and the cardinality of
Q respectively. We use bold letters for vectors and matrices.
Using an index set as a subscript of a vector (matrix) refers
to the partial vector (partial matrix) over the index set (with
columns over the index set). The superscript (t) is used to
denote the t-th iteration. The superscript ⋆ is reserved for the
optimal solution.

2. PROBLEM SETUP
We have the following regularized loss minimization problem
for machine learning applications [4, 5, 9, 10, 13]:

minimize
w∈Rd

P (w) ≜
λ

2
∣∣w∣∣

2
+

1

m

m

∑
i=1

`i(w
Txi), (2.1)
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Algorithm 1: Distributed Dual Coordinate Ascent [5]
Input: T ≥ 1
Output: w, α
Data: {(xi, yi)}

m
i=1 distributed over K local workers

Initialization: α(0)

[k]
← 0 for all local workers, andw(0)

← 0

for t = 1 to T do
for all local workers k = 1,2, ...,K in parallel do

(△α[k],△wk)←LocalDualMethod(α(t−1)

[k]
,w(t−1))

α
(t)

[k]
← α

(t−1)

[k]
+ 1
K
△α[k]

end
w(t)

←w(t−1)
+ 1
K ∑

K
k=1△wk

end

where xi ∈ Rd, i = 1, ...,m, are dataset, `i(⋅ ), i = 1, ...,m,
are loss functions, and λ is the regularization parameter.
Throughout the paper, we assume that ∣∣xi∣∣ ≤ 1, ∀i. Depend-
ing on the loss functions, one can consider (2.1) as various
machine learning problems ranging from regression to clas-
sification. For example, if the loss function is the hinge
loss function, the optimization problem with labeled dataset
{(xi, yi)}, i = 1, ...,m, where yi ∈ R is label information,
becomes the Support Vector Machine (SVM).

Using the conjugate function, i.e., `i(a) = supb ab−`
∗
i (b),

where a, b ∈ R and `i(⋅) is convex, the dual problem of (2.1)
is stated as

maximize
α∈Rm

D(α) ≜ −
λ

2
∣∣Aα∣∣

2
−

1

m

m

∑
i=1

`∗i (−αi), (2.2)

where αi is the i-th element of the dual vector α, and the
data matrixA ∈ Rd×m has the normalized training data 1

λm
xi

in its i-th column, i.e., Ai =
1
λm
xi. Due to the primal-

dual relationship as w(α) ≜ Aα, we have the duality gap
as P (w(α)) −D(α).

We consider a distributed dual coordinate ascent for the
regularized loss minimization problem over distributed data
in a network of computers. Let us review the previous re-
search on the distributed dual coordinate ascent in a star net-
work in the following section.

3. REVIEW OF DISTRIBUTED DUAL COORDINATE
ASCENT IN A STAR NETWORK

The authors in [4–6] consider a star network as shown in
Fig. 1 and assume that each local worker has disjoint parts
of dataset. Specifically, the k-th local worker has training
data {(xi, yi)}, i ∈ [k], where [k] is the index set for the
training data of the k-th local worker. Hence, if the star
network has K local workers, ∣ ∪

K
k=1 [k]∣ = m. In [5], the

authors introduced Algorithm 1 for the distributed dual co-
ordinate ascent, so-called CoCoA [5]. Later, the authors
proposed the updated CoCoA, so-called CoCoA+ in [6].
In Algorithm 1, LocalDualMethod(⋅) represents any dual
method to solve (2.2). The Stochastic Dual Coordinate As-
cent (SDCA), denoted by LocalSDCA(⋅), is a possible candi-
date for LocalDualMethod(⋅) [5, 6]. The convergence rate of
Algorithm 1 is given as follows [5].

Fig. 1. A star network, where Wi, i = 1,2,3, are local workers.

Theorem 3.1 ( [5, Theorem 2] ). Assume that Algorithm 1 is
run for T outer iterations of K local computers, with the pro-
cedure LocalSDCA(⋅) having local geometric improvement Θ.
Further, assume the loss functions `i(⋅ ) are 1/γ-smooth. Then,
the following geometric convergence rate holds for the global
(dual) objective:

E[D(α∗

) −D(α(T )

)]

≤ (1 − (1 −Θ)
1

K

λmγ

ρ + λmγ
)

T

(D(α∗

) −D(α(0)
)), (3.1)

where ρ is any real number satisfying

ρ ≥ ρmin ≜ maximize
α∈Rm

λ2m2∑
K
k=1 ∣∣A[k]α[k]∣∣

2
− ∣∣Aα∣∣

2

∣∣α∣∣2
≥ 0.

For LocalSDCA(⋅), Θ can be the following value [5]: Θ =

(1 − s
m̃
)
H , where m̃ ≜ maxk=1,...,Kmk is the size of the

largest block of coordinates among K local workers, H is the
number of local (or inner) iterations in LocalSDCA(⋅), and
s ∈ [0,1] is a step size which determines how far the next
solution will be from the current solution at each iteration.

Since a star network that the previous research [4–6] con-
sidered is a simple network model, and a network of comput-
ers can have various topologies, we study the distributed dual
coordinate ascent in a generalized network, specifically, a tree
structured network model.

4. GENERALIZED DISTRIBUTED DUAL
COORDINATE ASCENT IN A TREE NETWORK

Earlier works [4–6] provide the convergence analysis of the
distributed dual coordinate ascent in a star network as shown
in Fig. 1. However, the communication network connecting
different local workers is not necessarily a simple star net-
work, but instead can be an arbitrary undirected connected
graph. The design and analysis of the distributed dual coordi-
nate ascent in a general topology communication network is
not well understood as mentioned in [4]. One may argue that,
in a network, we can always form a virtual star network by
connecting local workers to a central station through the re-
lays of other computers. However, the communication delay
from one particular local worker to the central station can be
very large (long relays), significantly slowing down the con-
vergence of the distributed learning algorithm. Thus, it is nec-
essary to spend more computational resources on performing
distributed optimization among local workers close to each
other first, before communicating intermediate computational
results to a central station.

Motivated by these network constraints, in this section,
we investigate the design and analysis of a recursive dis-
tributed dual coordinate ascent algorithm over a general tree
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Fig. 2. A tree-structured network, which has two layers. A central
station (root node) has three direct child nodes S1, S2 and S3. Each
node Si has three direct local workers Wij , j = 1,2,3.

Algorithm 2: TreeDualMethod: General Distributed
Dual Coordinate Ascent for a General Tree NodeQ (not
root or leaf)

Input: T ≥ 1, αQ,w
Initialization: α(0)

[Q,k]
← α[Q,k] for all direct child nodes k

of node Q ,w(0)
←w

for t = 1 to T do
for all direct child nodes k = 1,2, ...,K of Q in parallel

do
(△α[Q,k],△wk)←TreeDualMethod(α(t−1)

[Q,k]
,w(t−1))

α
(t)

[Q,k]
← α

(t−1)

[Q,k]
+ 1
K
△α[Q,k]

end
w(t)

←w(t−1)
+ 1
K ∑

K
k=1△wk

end
Output: △αQ ≜ α

(T )

Q −α
(0)
Q , and

△wQ ≜w(T )
−w(0)

=AQ△αQ

structured network. We choose to investigate a tree net-
work, because every connected communication network has
a spanning tree. In addition, the tree structured network is a
generalization of a star network.

We first describe a general tree network, with a 2-layer
tree network example illustrated in Fig. 2. In the consid-
ered tree network, the root node corresponds to the central
station. Any other tree node corresponds to a local worker.
Each tree node may have several direct child nodes. With-
out loss of generality, we assume that only the local workers
corresponding to the leaf nodes have access to the distributed
data, namely disjoint segmented blocks of the data matrix A.
We use [Q,k] to denote the set of indices of data stored in the
subtree whose root node is the k-th direct child node of Q.
If Q is a leaf node, we use mQ to denote the number of data
stored in Q. In a tree network, a node can only communicate
with its child nodes or parent nodes.

We are ready to introduce the generalized distributed dual
coordinate ascent algorithm (which we call TreeDualMethod)
for solving (2.2) dealing with data stored in a general tree
structure network. Algorithm 2, Algorithm 3 and Procedure
P describe respectively the computational steps of TreeDual-
Method for a general tree node (not root or leaf), the root
node, and a leaf node. It is noteworthy that in distributed
networks, △wQ (or w) is transmitted between nodes, while

Algorithm 3: TreeDualMethod: General Distributed
Dual Coordinate Ascent for the Root Node Q

Input: R ≥ 1

Initialization: α(0)

[Q,k]
← 0 for all direct child nodes k of

node Q,w(0)
← 0

for t = 1 to R do
for all direct child nodes k = 1,2, ...,K in parallel do

(△α[Q,k],△wk)←TreeDualMethod(α(t−1)

[Q,k]
,w(t−1))

α
(t)

[Q,k]
← α

(t−1)

[Q,k]
+ 1
K
△α[Q,k]

end
w(t)

←w(t−1)
+ 1
K ∑

K
k=1△wk

end
Output: α(R), andw(R)

Procedure P. TreeDualMethod: General Distributed
Dual Coordinate Ascent for a Leaf Tree Node Q

Input: H ≥ 1, αQ ∈ RmQ , andw ∈ Rd consistent with other
coordinate blocks of α s.t. w =Aα

Data: {(xi, yi)}
mQ

i=1

Initialization: △αQ ← 0 ∈ RmQ , andw(0)
←w

for h = 1 to H do
choose i ∈ {1,2, ...,mQ} uniformly at random
find△α maximizing
−λm

2
∣∣w(h−1)

+ 1
λm

△αxi∣∣
2
− `∗i (−(α

(h−1)
i +△α))

α
(h)
i ← α

(h−1)
i +△α

(△αQ)i ← (△αQ)i +△α

w(h)
←w(h−1)

+ 1
λm

△αxi
end
Output: △αQ and△wQ ≜AQ△αQ

α (or △αQ) is not. Therefore, when the number of dataset,
m, is large, transmitting △wQ (or w) whose dimension is
much smaller than m, is beneficial to have communication
efficiency. In the next section, we provide the convergence
analysis of the generalized distributed dual coordinate ascent
in the tree structured network model.

5. CONVERGENCE ANALYSIS OF GENERALIZED
DISTRIBUTED DUAL COORDINATE ASCENT IN A

TREE NETWORK
We will show that for a tree network, there is a recursive re-
lation between the convergence rate of the algorithm at a tree
node Q and the convergence rate at Q’s direct child nodes.
Suppose that Q has K direct child nodes, and denote the dual
variable corresponding to its k-th direct child node byα[Q,k],
1 ≤ k ≤K. We define the local suboptimality gap forQ’s k-th
direct child node as:

εQ,k(α) ≜ maximize
α̂[Q,k]

D((α[Q,1], ..., α̂[Q,k], ...,α[Q,K],αQ))

−D((α[Q,1], ...,α[Q,k], ...,α[Q,K],αQ)), (5.1)

Note that the suboptimality gap for the k-th child node is de-
fined when α[Q,i]’s (i ≠ k) and αQ are fixed. We further
assume that we have the following local geometric improve-
ment for the k-th direct child node of Q.
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Assumption 5.1 (Direct child node geometric improvement
of TreeDualMethod). Let us consider a tree node Q. We as-
sume that there exists Θ ∈ [0,1) such that for any given α,
TreeDualMethod forQ’s k-th direct child node returns an up-
date △α[Q,k] such that
E[εQ,k((α[Q,1], ...,α[Q,k−1],α[Q,k] +△α[Q,k], ...,α[Q,K],αQ))]

≤ Θ ⋅ εQ,k(α). (5.2)

For a leaf node, TreeDualMethod uses LocalSDCA as in
Procedure P. We remark that this geometric improvement
condition holds true for the k-th direct child node of Q, i.e., a
leaf child node. The following proposition gives a bound on
the convergence for a leaf node B even when the input w in
Procedure P is also determined by αQ and αQ∖B .

Proposition 5.1 ( [5, Proposition 1] ). Let us consider a tree
node Q whose direct child node B is a leaf node. Assume
loss functions `i(⋅) are 1/γ-smooth. Then for leaf node B,
Assumption 5.1 holds with Θ = (1− λmγ

1+λmγ
1
mB

)
H , where mB

is the size of data stored at node B.

Additionally, Theorem 5.2, which is our main result,
states that if the geometric improvement condition holds true
for direct child nodes of Q, then the geometric improvement
also holds true for Q; thus it leads to a recursive calculation
of the convergence rate for the tree network.

Theorem 5.2. Let us consider a tree node Q which has K
direct child nodes satisfying the local geometric improvement
in Assumption 5.1, with parameters Θi, i = 1, ...,K. Suppose
that Algorithm 2 (or Algorithm 3) has an input w, and Algo-
rithm 2 (or Algorithm 3) is run for T iterations. We further
assume that the loss functions `i(⋅ ) are 1/γ-smooth.

Then, for any input w to Algorithm 2 (or Algorithm 3),
the following geometric convergence rate holds for Q:

E[D(α∗

Q,αQ) −D(α
(T )

Q ,αQ)] (5.3)

≤ (1 − (1 −Θ)
1

K

λmγ

ρ + λmγ
)

T

(D(α∗

Q,αQ) −D(α
(0)
Q ,αQ)),

where Θ = maxk Θk, and ρ is any real number satisfying

ρ≥ρmin ≜maximize
α∈R∣Q∣

λ2m2∑
K
k=1 ∣∣A[Q,k]α[Q,k]∣∣

2
− ∣∣AQαQ∣∣

2

∣∣αQ∣∣2
≥0.

Because Theorem 5.2 works for any non-leaf tree node,
by combining it with Proposition 5.1, we can recursively ob-
tain the convergence rate of the generalized distributed dual
coordinate ascent algorithm for the whole tree network. Note
that (1 − (1 − Θ)

1
K

λmγ
ρ+λmγ )

T becomes the “Θ” for Q, and
(5.3) is seen as the direct child node geometric improvement
of TreeDualMethod by the direct parent node of Q.

Theorem 5.2 is different from Theorem 2 of [5] in two as-
pects. Firstly, Theorem 5.2 works for any tree node in a gen-
eral tree network, beyond the star network discussed in [5].
Secondly, Theorem 5.2 is true, even when the input w of
Algorithm 2 is not only determined by αQ, but also deter-
mined by αQ. To see this, we note that, at the root node,
w = AQαQ +AQαQ, and the root node will pass w to tree
node Q by recalling TreeDualMethod(⋅) for the root node’s

Fig. 3. Duality gap at center node as the operation time of algo-
rithms goes. The distributed dual coordinate ascent in a tree network
(red) and a star network (blue), i.e., CoCoA, are considered when the
communication delay, tdelay , exists between the center node and its
direct child nodes. tdelay = 105

× tlp, where tlp represents the com-
putational time for one local iteration at a worker, and the average
tlp ≈ 10−5. The number of local iteration, i.e., H , is set to 100.

child nodes. Our proof of Theorem 5.2 addresses this chal-
lenge that the input w is also affected by αQ. Due to the
space limitation, we omit the proof of Theorem 5.2 here.

6. NUMERICAL EXPERIMENTS
We demonstrate the convergence of the generalized dis-
tributed dual coordinate ascent in a tree network model.
Since the authors in [5, 6] compared the distributed dual
coordinate ascent in a star network, so-called CoCoA, with
other methods including mini-batch SDCA [14], local SGD
and mini-batch-SGD [15], we only compare our generalized
distributed dual coordinate ascent in a tree network with the
CoCoA [5]. Additionally, since we are interested in the dis-
tributed dual coordinate ascent considering different network
topologies, we do not consider the CoCoA+ [6], which is the
updated version of the CoCoA [5].

In the numerical experiment, we assume that lots of com-
munication delays exist between the center node and local
workers for the CoCoA [5]. For the generalized distributed
dual coordinate ascent in a tree network, the same commu-
nication delays exist between the center node and the sub-
center nodes (assuming that communication delays between
sub-center nodes and local workers are negligible). We test
our algorithm for the ridge regression problem with the wine
quality dataset [16]. We consider a tree network model having
four local workers, two sub-center nodes (each having two lo-
cal workers), and one center node. The simulated star network
has four local workers and one center node. In both cases, we
evenly split the data to four local workers. Fig. 3 shows the
duality gap at the center node as the operation time of the
algorithms goes. We consider the case when the communi-
cation delay is 105 times larger than the local computational
time for one local iteration at a local worker. As demonstrated
in Fig. 3, the operation time of the distributed dual coordinate
ascent can be further reduced by sharing local results via sub-
center nodes when communication delays between the center
node and its direct child nodes are large.
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and M. Takáč, “Adding vs. averaging in distributed
primal-dual optimization,” in Proceedings of the Inter-
national Conference on Machine Learning, 2015.

[7] S.-Y. Zhao and W.-J. Li, “Fast asynchronous parallel
stochastic gradient descent: A lock-free approach with
convergence guarantee,” in Proceedings of the AAAI
Conference on Artificial Intelligence, 2016.

[8] R. Zhang, S. Zheng, and J. T. Kwok, “Fast distributed
asynchronous SGD with variance reduction,” CoRR,
abs/1508.01633, 2015.

[9] Z. Huo and H. Huang, “Distributed asynchronous dual
free stochastic dual coordinate ascent,” in Proceedings
of the IEEE International Conference on Data Mining,
2018.

[10] C.-J. Hsieh, H.-F. Yu, and I. S. Dhillon, “PASSCoDe:
Parallel asynchronous stochastic dual co-ordinate de-
scent,” in Proceedings of the International Conference
on Machine Learning, 2015, vol. 15.

[11] C.-J. Hsieh, K.-W. Chang, C.-J. Lin, S. S. Keerthi, and
S. Sundararajan, “A dual coordinate descent method for
large-scale linear SVM,” in Proceedings of the Interna-
tional Conference on Machine Learning. ACM, 2008,
pp. 408–415.

[12] K. Tsianos, S. Lawlor, and M. G. Rabbat, “Commu-
nication/computation tradeoffs in consensus-based dis-
tributed optimization,” in Advances in Neural Informa-
tion Processing Systems, 2012, pp. 1943–1951.

[13] S. Shalev-Shwartz and T. Zhang, “Stochastic dual co-
ordinate ascent methods for regularized loss minimiza-
tion,” Journal of Machine Learning Research, vol. 14,
pp. 567–599, 2013.
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