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ABSTRACT

The information-bottleneck (IB) principle is defined in terms
of mutual information. This study defines mutual information
between two random variables using the Jensen-Shannon (JS)
divergence instead of the standard definition which is based
on the Kullback-Leibler (KL) divergence. We reformulate the
information-bottleneck principle using the proposed mutual
information and apply it to the problem of pairwise clustering.
We show that applying IB to clustering tasks using JS diver-
gences instead of KL yields improved results. This indicates
that JS-based mutual information has an expressive power at
least as the standard KL-based mutual information.

Index Terms— Jensen-Shannon (JS) divergence, pairwise
clustering, information bottleneck

1. INTRODUCTION

The information bottleneck (IB) method is a technique in infor-
mation theory introduced by Tishby, Pereira, and Bialek [1]. It
is designed for finding the best tradeoff between accuracy and
complexity (compression) when summarizing (e.g. cluster-
ing) a random variable x, given a joint probability distribution
p(x, y) between x and an observed relevant variable y. The
IB principle is mostly applied to form clustering algorithms
(see e.g. [2] [3] [4]). Recently IB has been also suggested as
a theoretical foundation for deep learning [5]. The IB prin-
ciple is defined in terms of the mutual information between
the feature information y and compressed version of the r.v.
x. The Mutual information between two random variables is
defined as Kullback-Leibler (KL) divergence between their
joint distribution and the product of marginal distributions.

Measuring the difference between two distributions – their
divergence – is a key element in many data analysis tasks.
The most popular is the Kullback-Leibler (KL) divergence
which measures the expected number of extra bits required to
code samples from one distribution with a code optimized for
another. An alternative measure is the Jensen-Shannon (JS)
divergence [6]. As a pure distance measure, JS seems superior
in that it is symmetric, it is bounded from above and its square
root is even a metric [7]. The KL divergence, however, is by
far the most frequently used in the formulation of machine

learning algorithms since it is related to maximum-likelihood
estimation.

The JS divergence between distributions p and q can be
seen as measuring the performance of the optimal binary clas-
sifier that needs to decide whether a given data point was sam-
pled from p or from q. This interpretation recently resulted in
connections between JS and the analysis of several deep learn-
ing algorithms. Generative adversarial networks (GANs) [8]
are a class of methods for learning generative models based on
game theory. Goodfellow et al. [8] showed that training a GAN
is equivalent to minimizing the Jensen-Shannon divergence
between the generator and the data distributions. A popular
word embedding algorithm is word2vec [9] [10]. Melamud
and Goldberger [11] showed that the global optimum of the
word2vec objective function is the JS divergence between word
and context joint distribution and the product of their marginal
distributions. They also showed that word2vec’s algorithm
finds the optimal low-dimensional approximation of this JS
measure. These and other examples motivate re-considering
JS as the preferred measure for a range of machine learning
algorithms.

In this study we define mutual information between ran-
dom variables by using JS instead of KL. We dub this mutual
information the Jensen-Shannon Mutual Information (JSMI).
The IB principle was originally defined based on KL-based mu-
tual information. We reformulate the information bottleneck
principle using the proposed, JS-based mutual information,
JSMI.

We utilize the proposed IB based on JSMI measure for
the task of pairwise clustering. In a pairwise clustering setup
features representation is not available and we are only given
pairwise similarity information between data points. Previous
works used either Normalized-Cut [12] or IB based on mutual
information [4] as a criterion that is optimized to find the best
clustering. We show that applying IB to pairwise clustering
tasks using JSMI instead of KL based mutual-information
yields improved results.

2. MUTUAL INFORMATION BASED ON
JENSEN-SHANNON

In this section, we define a dependency measure between
two random variables, which is based on the Jensen-Shannon

3507978-1-5386-4658-8/18/$31.00 ©2019 IEEE ICASSP 2019



divergence. There are several standard methods of measur-
ing the distance between two discrete probability distribu-
tions, defined on a given finite set A. The KL divergence
of a distribution p from a distribution q is defined as follows:
KL(p||q) =

∑
i∈A pi log

pi
qi

. The mutual information between
two jointly distributed random variables X and Y is defined
as the KL divergence of the joint distribution p(x, y) from the
product p(x)p(y) of the marginal distributions of X and Y, i.e.
I(X;Y ) = KL(p(x, y)||p(x)p(y)).

The Jensen-Shannon (JS) divergence [6] between distribu-
tions p and q is:

JSα(p, q) =αKL(p||r) + (1−α)KL(q||r) (1)

= H(r)− αH(p)− (1−α)H(q)

such that 0 < α < 1, r = αp+(1−α)q and H is the entropy
function (i.e. H(p) = −

∑
i pi log pi). Unlike KL divergence,

JS divergence is bounded from above and 0 ≤ JSα(p, q) ≤ 1.
We next propose a new measure for mutual information

using the JS-divergence between p(x, y) and p(x)p(y) instead
of the KL-divergence. We define the Jensen-Shannon Mutual
information (JSMI) as follows:

Jα(X;Y ) = JSα(p(x, y), p(x)p(y)). (2)

It can be easily verified that X and Y are independent if and
only if Jα(X;Y ) = 0.

We next derive an alternative definition of the JSMI de-
pendency measure. Assume we choose between the two dis-
tributions, p(x, y) and the product of marginal distributions
p(x)p(y), according to a binary random variable B, such that
p(B = 1) = α. We first sample a binary value for B and next,
sample a r.v. W as follows:

p(W =(x, y)|B)=

{
p(x)p(y) if B=0
p(x, y) if B=1.

(3)

The divergence measure Jα(X;Y ) can alternatively be defined
in terms of the mutual information between W and B. The
mutual information between W and B is:

I(W;B) = H(W )−
∑
i=0,1

p(B= i)H(W |B= i)

= H(αp(x, y) + (1−α)p(x)p(y))
−αH(p(x, y))− (1−α)H(p(x)p(y)).

Eq. (1) thus implies that:

Jα(X;Y ) = I(W ;B). (4)

We note that the JSMI satisfies the fundamental data pro-
cessing inequality. If X → Y → Z is a Markov chain, then

Jα(X;Z) ≤ Jα(X;Y ).

To validate it we can use the fact that Jensen-Shannon is an
f -divergence and that the data processing inequality for KL
divergence extends to all f -divergences [13].

3. A JSMI VERSION OF THE IB PRINCIPLE

In this section we define a variant of the Information Bottle-
neck (IB) principle [1] using the proposed JS-based mutual
information. Assume we are given a joint distribution p(x, y)
of objects X and features Y and we want to cluster the object-
set in such a way that the clusters are maximally correlated
with the features. The IB principle [1] states that among all
the possible clusterings of the object set into a fixed number
of clusters, the desired clustering is the one that minimizes the
loss of mutual information between the objects and the fea-
tures. According to the (hard version of the) IB principle we
seek a clusteringC of object spaceX such that the information
loss I(X;Y )− I(C;Y ) is minimized. Note that C is a deter-
ministic grouping of the objects and therefore C → X → Y
is a Markov chain. We use the notation x ∈ c to denote that
x is in cluster c. The clustering cost function we thus want to
minimize is:

Smi(C) = I(X;Y )− I(C;Y ) (5)

=
∑
c

∑
x∈c

p(x)KL(p(y|x)||p(y|c)).

We next define a JSMI version of the IB principle where
we use JSMI instead of the mutual information as a measure of
the correlation between two random variables. The modified
cost function we aim to minimize is:

Sjsmi(C) = Jα(X;Y )− Jα(C;Y ). (6)

The data processing lemma [13] guarantees that the clus-
tering operation indeed causes a JS information loss, i.e.
Sjsmi(C) ≥ 0. Hence, defining the IB principle using JS
instead of KL makes sense.

There is no closed-form solution for the minimal information-
loss criterion. Several standard optimization algorithms can
be utilized to find the best clustering. In this study we apply a
greedy sequential algorithm (see e.g. [2]).

4. PAIRWISE CLUSTERING BASED ON THE JSMI
CRITERION

In this section the JS-based information bottleneck principle is
applied to pairwise clsutering. We first represent the problem
as graph clustering and then translate it into the problem of
clustering the states of a Markov chain. Finally, we apply the
JSMI version of the IB principle to define a clustering cost
function. The optimal clustering is the one that minimizes the
proposed cost function.

Given a set of data points x1, ..., xn and some symmetric
notion of similarity wij ≥ 0 between all pairs of data points
xi and xj , the goal of clustering is to divide the data points
into several groups such that points in the same group are
similar and points in different groups are dissimilar to each
other. In many cases feature representation is not available
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and we are only given pairwise similarity information between
the data points. For example, in social networks, only binary
neighborhood relations are given. In these cases feature based
clustering algorithms (such as k-means) cannot be applied in
a straightforward way. Instead, we are looking for a partition
of the data based only on the similarity measure between the
points.

We can represent the data as a similarity graphG = (V,E).
Each vertex i in this graph represents a data point xi. Two
vertices are connected if the similarity wij between the cor-
responding data points xi and xj is positive and the edge is
weighted by wij . The problem of clustering can now be refor-
mulated using the similarity graph: we want to find a partition
of the graph in which existing edges between different groups
have low weights and edges within a group have high weights.

Denote the similarity matrix by W = (wij). The de-
gree of a vertex i ∈ V is defined as di =

∑n
j=1 wij . The

degree matrix D is defined as the diagonal matrix with the
degrees d1, ..., dn on the diagonal. The matrix P = D−1W is
a stochastic matrix (non-negative entries, row sums are all 1)
and therefore it defines a stationary Markov chain that corre-
sponds to a random walk on the graph nodes. Let X = {Xt}
be the n-valued stationary Markov chain defined by:

Pij = (D−1W )ij = p(X2 = j|X1 = i) =
wij∑
k wik

(7)

The transition probability Pij of jumping in one step from i to
j is proportional to the edge weight wij . Let π = (π1, ..., πn),
where πi = di/(

∑
j dj). It can be easily verified that P>π =

π. Hence, if the graph is connected and non-bipartite, then π is
the unique stationary distribution of the Markov chain defined
by P [14]. Therefore, the joint stationary probability of X1

and X2 is:

p(X1 = i,X2 = j) =
wij∑
kl wkl

. (8)

Given the random walk model (7) we thus translated the graph
clustering problem, into the problem of clustering the states of
a Markov chain.

Let {A1, ..., Am} be a partition of the states of a Markov
chain {1, ..., n} into m clusters and let C denote the subset
membership function, i.e. C(i) = j if i ∈ Aj . For each t we
define a random variable Ct = C(Xt) indicating the cluster
membership of the state visited by the random walk at time t.
The joint distribution of the random variables (C1, C2) defined
on the clusters is:

p(C1 = i, C2 = j) = p(X1 ∈ Ai, X2 ∈ Aj). (9)

Note that the joint clustering forms a Markov chain:

C1 → X1 → X2 → C2.

The original walk over the points also determines the walk
over the clusters. The goal of clustering is to choose the cluster-
ing such that the loss in mutual information due to clustering

Table 1. The JSMI Pairwise Clustering Algorithm.

Input: A similarity graph defined by the n × n weight
matrix W.
Output: A partition of the graph vertices into m clusters.

Algorithm:

1. Convert the graph into a Markov chain:

w̃ij , p(X1 = i,X2 = j) =
wij∑
kl wkl

2. Choose a random partition C of the Markov states.

3. Loop until there is no change:

• for i = 1, ..., n
Move state i into the cluster that minimizes the
information loss:

scorejsmi(C) = Jα(X1;X2)− Jα(C1;C2).

is minimized. A good Markov-state clustering should preserve
maximum information on the visited points. Using the mutual
information criterion, the best clustering of the given n points
into m clusters is the one that minimizes the information loss
of the mutual information I(X1;X2)− I(C1;C2) over all the
partitions of the state-space into m subsets [4]. The clustering
score we thus want to minimize is:

scoremi(C) = I(X1;X2)− I(C1;C2) (10)

where C1 = C(X1), C2 = C(X2). The optimal state-
clustering is the one that minimizes the information-loss
function scoremi(C).

Using the JSMI version of the IB principle, the modified
cost function we aim to minimize is:

scorejsmi(C) = Jα(X1;X2)− Jα(C1;C2). (11)

The data processing inequality guaranties that the score is non-
negative. As described above, the minimization can be done
by a greedy strategy. The proposed algorithm is summarized
in Table 1. In the next section we empirically compare the
mutual-information (MI) and JSMI clustering criteria and show
that using JSMI for information-bottleneck clustering indeed
yields improved results.

5. EXPERIMENTAL RESULTS

In this section we demonstrate our proposed clustering ob-
jective function on the following commonly used real-world
datasets. USPS-245: 1650 instances of handwritten digits
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Table 2. Clustering results on standard datasets.
NCut MI JSMI

NMI RI NMI RI NMI RI
USPS-245 .56 .77 .76 .87 .81 .91
Iris 65 .78 .71 .83 .78 .88
Wine .86 .94 .79 .89 .85 .93
Face .52 .63 .43 .63 .49 63

2,4 and 5 from the USPS dataset [15]. Iris contains flower
petal and sepal measurements from three species of irises,
150 instances [16]. Wine are the results of a chemical anal-
ysis of wines. The analysis determined the quantities of 13
constituents found in each of three types of wines. 178 in-
stances. Olivetti Faces (OlFace5) 10 images of 5 different
people, 64× 64 size [17].

To construct the pairwise similarity matrix we used the
k-nearest neighbor graph, based on the Euclidean distance,
with k = 10. We set wij = 1 if node i is a k-nearest neighbor
of node j or j is a k-nearest neighbor of i. Otherwise, we set
wij = 0. We used a simple sequential clustering algorithm
to find the best clustering of the data. It starts with a random
clustering of the object-set. We then go over the data points in
a circular manner and check for each point whether its removal
from one cluster to another can reduce the information loss.
This loop is iterated until no single-point transition offers an
improvement. Since there is no guarantee that the algorithm
will find the global optimum, we ran the algorithm on several
initial random partitions and chose the best local optimum. We
use the same random initialization for all methods.

We implemented three optimization criteria MI (10) [4],
JSMI (11) and also the non information-theoretical measure
Normalized Cut (NCut) [18] [12]. Ncut is is defined as follows:

scorencut(C) =
m∑
i=1

p(X2 6∈ Ai|X1 ∈ Ai). (12)

In all the implementations of the JSMI we set the parameter α
to be 1/2. We didn’t observe a significant change when trying
other values of α.

To evaluate the performance of the clustering methods we
measured the clustering results against the true labels using
two standard external validation indices: normalized mutual
information (NMI) [19], and the Rand index (RI) [20]. We
refer the reader to [21] for details regarding these measures.
The results are shown in Table 2. As can be seen, using JSMI
criterion for IB clustering (10) we get better results than using
the standard MI criterion (11) to find the optimal clustering.
Also in most cases the NCut was much worse or similar to the
JSMI based clustering algorithm.

We next evaluated the proposed clustering approach using
a controlled experiment on simulated datasets. In this experi-
ment we directly compare the MI criterion (10) for pairwise
clustering to the proposed JSMI criterion (11). We simulated

Table 3. NMI clustering results on three concentric circles as
a function of the noise SD.

σ NCut MI JSMI
0.1 0.902 0.982 0.993
0.2 0.715 0.754 0.765
0.3 0.678 0.746 0.750

a standard clustering problem in which the data are formed
of concentric circles, where each circle represents a different
cluster. In this problem the clusters are non-convex and it
is considered to be impossible for the k-means algorithm to
solve. We created a dataset composed of three concentric cir-
cles (with radii 1, 2 and 3) with 50 points equally spaced on
each circle. An isotropic Gaussian noise with variance σ2 was
added to each point. The pairwise similarity matrix was con-
structed using the same procedure as for the dataset described
below. We applied two variants of the sequential greedy clus-
tering algorithm. In the first variant we aimed to minimize the
MI score and in the second we aimed to minimize the JSMI
score. We used the same random clustering initialization for
the two algorithms. Therefore, the only difference between
the two methods was the pairwise clustering criterion used for
optimization. Table 3 shows the results (as a function of σ the
noise standard deviation) averaged over 100 experiments. The
clustering quality was measured by the NMI index. Similar
results were obtained by measuring performance by the Rand
Index. We also show the clustering result based on the NCut
criterion. The results show that by using the JSMI criterion
rather than the MI led to better result. This indicates that JSMI
has better expressive power as the standard mutual information.

6. CONCLUSIONS

To conclude, in this study we defined a mutual information
notion based on the Jensen-Shannon divergence dubbed JSMI
and we developed a corresponding Information Bottleneck
principle. We then used it as a pairwise clustering optimiza-
tion criterion and obtained better performance compared to
the standard clustering algorithm based on the MI criterion.
Recent deep-learning analysis showed the potential usefulness
of the JSMI measure. We hope that this study will encourage
future machine learning applications of it for clustering and
other tasks.
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