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ABSTRACT

This paper proposes a novel Discriminative Feature Selection
Guided Deep Canonical Correlation Analysis (D?CC A) for
multiview learning. The proposed (D?C'C A) enhances the
discriminative power of the learned featured representation
by imposing the selection of the most discriminative features.
Moreover, it learns to maximize the correlations between two
views. Also, an alternating iterative learning algorithm is pre-
sented to find the sub-optimal solution. The experimental re-
sults demonstrated that the proposed (D?CC A) can achieve
a higher average accuracy compared to several existing meth-
ods.

Index Terms— Discriminative Feature Selection Guided
Deep Canonical Correlation Analysis, Multiview Learning,
Deep CCA

1. INTRODUCTION

In many computer vision applications, an object is observed
from different complementary views or modalities or sets.
Moreover, the presence of multiple views creates an opportu-
nity of learning better representations by effectively utilizing
the information obtained from different views.

Researchers invested substantial efforts to investigate sev-
eral techniques for multiview learning. Hardon ez al. [1] pre-
sented Canonical Correlation Analysis (CC'A) which aims to
maximize the correlation between two different views. Ker-
nel CCA (KCCA) [1] was presented to reveal the potential
nonlinear relations between the two views which can not be
revealed by (CCA). As (CCA) and (KCCA) are limited
to revealing relations between two views only, (M CCA) [2]
was introduced to interpret the relations among more than two
views. Rasiwasia et al. [3] proposed Cluster Canonical Cor-
relation Analysis (Cluster — CC'A) to consider the corre-
lations between samples from the same classes only. Kan et
al. [4] extended Linear Discriminant Analysis LD A to Multi-
view Discriminant Analysis (MwvD A). It maximizes the trace
ratio between the within-class and between-class matrices for
all views or sets.

Due to the revolutionary success of deep learning, re-
searchers proposed to learn unified representation from dif-
ferent views using deep neural networks. Ngiam et al. pro-
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posed to capture the middle level relationship between two
views using Deep Bimodal Autoencoder [5].

Conversely, such models does not discover the correla-
tions across the views explicitly which limits the performance
of multiview learning. Andrew et al. introduced the Deep
Canonical Correlation Analysis (Deep — CC'A) which learns
jointly complex nonlinear transformations of two views such
that the resulting representations are highly correlated [6].
Wang et al. proposed Deep Canonically Correlated Autoen-
coders (DCCAE) which is basicly adding a reconstruction
regularization term to the (Deep — CC'A) objective function
[7]. The extensive experiments showed the importance of the
reconstruction regularization term. In [8], Chang et al. pre-
sented stochastic decorrelation loss to (Deep — CC A) objec-
tive function.

The architecture of (Deep — CCA) encourages the net-
work to seek an effective representation of data. However,
(Deep — CC A) dismisses supervision incorporation leading
to limited performance. According to [9], the learned rep-
resentation is composed of task-relevant and task-irrelevant
units. Only task-relevant units, which are related to the objec-
tive, carries the discriminative features representation. To ad-
dress this issue, a unified framework is proposed to integrate
discriminative feature selection and (Deep — CCA). Intu-
itively, supervised feature selection is applied on the learned
feature representation of (Deep — CC'A) to select the most
discriminative features. The selected units are used to opti-
mize the deep neural network to improve the discriminability
on the selected units and maximize the correlation between
the two views.

The rest of this paper is organized as follows. Section 2
presents background of (CC'A). The proposed Discrimina-
tive Feature Selection Guided (Deep — CC A) is described in
Section 3. The experimental results are reported in Section 4.
Finally, conclusions are drawn in Section 5.

2. BACKGROUND ON CANONICAL CORRELATION
ANALYSIS

Canonical correlation analysis (CC'A) aims at maximizing
the correlation between two different views [1]. Consider two
views of N zero mean variables X € RP*Nand Y € RI*NV,
p and g are the dimensions of feature samples in X and Y, re-
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spectively. (CC'A) aims at learning pairs of linear projection
of the two views that are maximally correlated as follows:

T
.. W Vg W
maximize L )

Wy , Wy T T
VW Vg Wa ¢ [ Wy Xy wyy

where ¥, is the cross-covariance between X and Y. X,
and X, are the covariances of X and Y, respectively. When
finding the pairs (wy,,w,), sutl)sequen.t constfaints are con-
strained to be uncorrelated (w, Y., w] = wyX,,w] = 0)
and i # j. The problem is reformulated as follows:

maximize Trace(W.¥,,W,)
ety @)

subjectto WX, W, = I; WyTEyyWy =1

The optimization problem Eq. (2) can be solved through dif-

_1 _1
ferent ways. The authors in [6] defined T' = .07 Yy Xy
and used singular value decomposition U DV, where U and
V' are the left and right singular vectors and D is the a diag-
onal matrix of singular values. The optimum pro_]ectlons are

computed by finding W, = Em Uand W, = Eyy V.

3. THE PROPOSED FRAMEWORK

3.1. Discriminative Feature Selection Guided Deep CCA

In this section, we propose the learning framework of Dis-
criminative Feature Selection Guided Deep CCA (D?CCA)
as in Fig. 1. We integrated the feature selection in the final
layer units and reformulated the problem as follows:

mizg corr(fo(X;6z), f,(Y30,)) 3
+MC(Py; Fy) + M C(Py; Fy)

maximize
02,0

where F, = f,(X;0,) and F}, = f,(Y;6,) and represent the
output of the two deep neural network of each view, 0, and 0,
are the network parameters of X and Y, respectively. A\; and
Ao are balancing parameters. corr(fz(X;0z), fy(Y;60,)) =
Tr(TTT) and T = X3 X0y B2 . C(Py; f) and C(Py; f,)
are the feature selecting regularized term, with a learned fea-
ture selection matrix P, and P, performed on the output fea-
ture representation F; and I, respectively. Specifically, ¢ —
th row vector in P, denoted by p’, is all zero vector except the
1 — th element corresponding to the ¢ — th feature dimension
as follows:

pi = [0,.,0,1,..,0,0] @

where P, and P, € Rmxd_ d is the size of output feature
representation and m is the size of the selected feature repre-
sentation.

Feature selection can be mainly split into three categories:
unsupervised, supervised, and semi-supervised. In order to
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Fig. 1. The proposed D?CCA.

improve the discriminative information, supervised feature
selection is adopted. Here, C'(P,, F;) is chosen as follows:

Tr(P,F,L{ FT PT)
Tr(P,F, Lz FTPT)

where L is the between class laplacian matrix, and L, is the
within class laplacian matrix for view X. The between-class
laplacian matrix L = DJ — S}, where Dy is the diagonal
matrix and its entries are column sum of Si for view X. The
within-class laplacian matrix LY = D2 — S%, where D is
the diagonal matrix and its entries are column sum of .S}, for

view X. S is the (i,j) — th element in matrix S% and is
computed as follows:

S — { exp(—|lz; — z;||?/ts) i,jE€c,ceCii#j ©)

0 otherwise

where C is the set of classes and tg is chosen to be 1. S}/
is the (i, j) — th element in matrix S;” and is computed as
follows:

S = exp(—| @ — z;)|/ts) 7

where z; is the mean of data samples belonging to the same
class and view Y has a similar expression. Generally, the
trace ratio does not have a closed form solution, therefore the
problem is changed to trace difference problem to achieve a
globally optimum solution [10]. Following [10], Eq. (3) is
reformulated as follows:
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where 7, and -y, are the trace ratio score for view X and Y,
respectively.

3.2. Optimization

Solving the final objective function is hard due to the non
linearity introduced by the deep neural network. Therefore,
alternating optimization approach is employed to iteratively
learn the network parameters (6., 0,), the feature selection
matrices (P, P,), and the trace ratio score (7, 7). In other
words, we optimize two sub problems, the feature selection
problem and canonical correlation maximization problem.

3.2.1. Feature Selection Problem

First, the parameters of the two deep neural networks are fixed
and the parameters of feature selection are learned. Specifi-
cally, for view X, we compute both the feature selection ma-
trix P, and the trace ratio score v, which are optimized in an
alternating manner. Suppose P, is computed from the previ-
ous iteration, -, is computed as follows:

_ Tr(P,F,LiFIPY)

.= 9
7 = Tr(P,F, Lz FTPT) ®)

where L., and L; are computed as in Eq. (6) and Eq. (7).
Using the obtained +,, each feature in view X is ranked ac-
cording to its discriminative power score r (7, ) according to:

7(Y2) = Tr(peFu(L§ — 72 LE)FLpT) (10)

where p, is a one hot vector corresponding to each feature
dimension as in Eq. (4). This procedure will continue in iter-
ative manner till convergence. Similarly for the second view
Y, we follow the same steps. Algorithm 1 summarizes the
optimization procedure for both X and Y.

Algorithm 1 Feature Selection Problem
Require: Two learned feature representation F), and F,
number of selected features m, laplacian matrices L7, L3,
LY, and LY,
Ensure: P., Py, 7., and vy,
1: Initialize P,=P,=I € R’
2: Repeat
3: Obtain vy, using Eq. (9) and vy, similarly.
4: Compute the score of each j feature with Eq. (10)
for each view.
5: Rank the features according to their discriminative
power score descendingly for each view.
6: Update the feature selection matrix P, and P,.
: Until Convergence

3

3.2.2. Discriminative Feature Selection Guided Deep CCA
Learning

When P,, P,, v,, and -y, are fixed, the parameters of the two
deep neural networks are optimized using Stochastic Gradi-
ent descent or any of its variants. The gradient of the objec-
tive function in Eq. (8) with respect to the learned feature
representation F), is computed as follows:
oL 1 _ _
= — 2V Fy + Vy F,
OF, N( + VayFy) (11)
+ MNP P F (LY — o L)

where
_1 _1
Vay = S22 UVTS,2 (12)
and
1__1 _1

oL
N is the number of data samples and o has a symmetric
Yy

expression. The details of optimization is summarized in Al-
gorithm 2.

Algorithm 2 Discriminative Feature Selection Guided Deep
CCA
Require: Two views X and Y, balancing parameters A; and
Ao, number of selected features m
Ensure: 0., and 6,
1: Initialize 6, and 6,
2: Repeat
3: Fix 0, and 0,, and update P,, Py, v, and vy, using
Algorithm 1
4: Fix P, Py, v, and vy, and update 6,
and 0,,.
for each view using Eq. (12-14).
5: Until Convergence

4. EXPERIMENTAL RESULTS

In this section, we evaluate the proposed D?CC A for ob-
ject recognition and handwritten digits recognition using two
datasets, Caltech101 object database [11] and MNIST hand-
written digit database [12].

4.1. Experiments on Caltech101 Dataset

Caltech101 is a widely used database for object recognition
containing a 9144 images from 102 classes of 101 object
classes (animals, vehicles, tree, etc) and one background
class. Following the experimantal setting [11], we chose 10
random objects per class for training and the rest for testing.
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Fig. 2. Performance analysis of the influence of the number
of discriminative selected features m.

We extracted two types of features; hand crafted (Dense SIFT
+ Bag of visual words BOV W) and Learning based features
VGG — f [13] each representing one of the two views. Each
of the two features was applied to PC' A and the top 100 di-
mensions were selected as preprocessing. For classification,
Linear SVM is chosen [14]. Table I shows the recognition
accuracy of each feature. From figure, we can notice the
superiority of VGG — f over the hand crafted feature.

Table 1. Recognition Accuracy for each View on Caltech101
Database.

View Recognition Accuracy %
Dense SIFT+ BOVW 48
VGG-f feature 69

We choose the same layer size for each network [100,
1200, 1200, 1200, 100] with ReLU as a non linear activation
function. Our code was implemented using Pytorch. First,
we conducted several experiments to study the effect of the
number of selected feature on the recognition accuracy. Fig.2
shows that choosing 80 features out of 100 has the highest
recogntion accuracy. In other words, this phenomena proves
that some of output units are irrelevant to the recognition task
as the may not represent the object itself. Moreover, we com-
pared D2CC S with CC A [1], ClusterCC A [3], DeepCC A
[15], DCCA [16] and MvDA [4]. The results are summa-
rized in the table 2 which clearly shows that D>C'C A outper-
forms other existing methods.

Table 2. Recognition accuracy comparison between the pro-
posed methods D2C'C A and the other multi-view techniques
on Caltech101 Dataset.

Multi-view Technique Recognition
Accuracy %

MvDA 80

CCA 70.69

DCCA 71.86

Cluster CCA 70.69

Deep CCA 79.3

D2CCA 82

4.2. Experiments on MNIST database

MNIST handwritten digits dataset [12] consists of 60000
training images and 10000 for testing image. It contains 10
classes for numbers between 0 to 9. Each image is 28 x
28 . Each image is divided into two halves containing 14
columns to produce two views as in [6]. 50000 images were
used in training phase. 10000 images were used in validation
and the rest is for testing. We followed the same architecture
deployed in [7]. Table 3 shows the comparison between Deep
CCA and the proposed D2C'C A. As shown in the table, the
proposed D2CC'A has a recognition accuracy higher than
Deep CCA.

Table 3. Recognition accuracy comparison between the pro-
posed method D2CC A and the other multi-view techniques
on MNIST Dataset.

Multi-view Technique Recognition
Accuracy %

deep CCA [7] 97.2

D2CCA 98.1

5. CONCLUSIONS

We proposed a novel approach called D2CC A for multiview
learning. D?C'C A has the ability to satisfy maximizing the
correlations between the two views and selecting the discrim-
inative features to dismiss the irrelevant feature representation
for the recognition task. The proposed D?CC A is applied
to fuse multiview features. The experimental results demon-
strated that D?C'C A outperformed the other methods com-
pared in terms of average recognition accuracy.
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