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ABSTRACT

We propose a semidefinite programming (SDP) approach to
community detection in graphs in the presence of additional
non-graphical side information, and analyze the correspond-
ing exact recovery threshold. The community detection prob-
lem is considered in the context of the binary symmetric
Stochastic Block Model (SBM), and the side information is
in the form of partially revealed labels with erasure proba-
bility ε. Our results show that the semidefinite programming
relaxation of the maximum likelihood estimator can achieve
exact recovery down to the optimal threshold. The theoretical
findings of this paper are validated via simulations on finite
synthetic data-sets, showing that the asymptotic results of this
paper can also shed light on the performance at finite n.

Index Terms— Exact Recovery, Semidefinite Program-
ming (SDP), Binary Stochastic Block Model, Side Informa-
tion, Community Detection.

1. INTRODUCTION

Many of the available data nowadays are inherently related to
graphs, such as social networks, networks representing pro-
tein interactions and citation networks. Also many problems
in signal processing can be gainfully represented by graph-
ical structures such as hierarchical clustering in images and
video [1]. In this paper, we consider the problem of com-
munity detection via the observation of a connectivity graph,
which is a facet of the broader field of signal processing on
graphs [2, 3].

The Stochastic Block Model (SBM) [4–6] is a popular
statistical model for community detection. This paper con-
siders the binary symmetric SBM, which consists of n nodes
belonging to two equal sized communities. The nodes have
identical, independent and uniform distribution. If two nodes
belong to the same community, there exists an edge between
them with probability p; otherwise there is an edge between
them with probability q. The purpose of community detection
is to recover the labels (communities) based on observing the
graph edges.

Most of the literature on community detection has con-
centrated only on graphical observations, see [7–9] and refer-

ences therein. However, in many practical applications, non-
graphical relevant information is available that can aid the in-
ference. For example, social networks such as Facebook and
Twitter have access to other information other than the graph
edges such as date of birth, nationality, and school. The no-
tion of side information has been introduced and studied be-
fore in the literature, for a survey, see [10–14] and references
therein.

Semidefinite Programming (SDP) is a computationally
efficient convex optimization technique that has shown its
utility in solving signal processing problems [15, 16]. In the
context of community detection, SDP was introduced in [17],
where it was used for solving a minimum bisection problem,
obtaining a sufficient condition that is not optimal. In [18],
a SDP relaxation was considered for a maximum bisection
problem. For the binary symmetric SBM, [19] showed that
the semidefinite programming relaxation of Maximum likeli-
hood (ML) can achieve the optimal exact recovery threshold
with high probability. These results were later extended to
more general models in [20]. The problem of solving graph
inference problems with non-graphical side information is
one that calls for efficient algorithms, but to date it has not
been formulated or analyzed via convex optimization.

In this paper, we show the asymptotic optimality of SDP
relaxation of maximum likelihood solution of community de-
tection in the presence of non-graphical side information. In
particular, we consider the binary symmetric SBM with side
information in the asymptotic regime of p = a logn

n and q =

b lognn , with a ≥ b > 0. We study side information in the
form of partially revealed labels with the erasure probability
ε ∈ (0, 1). We show that

• When log ε = o(log n), then SDP achieves exact re-
covery whenever (

√
a −
√
b)2 > 2 which matches the

optimal threshold characterized in [10].

• When log ε = −(β+ o(1)) log n, and β > 0, then SDP
achieves exact recovery whenever (

√
a−
√
b)2+2β >

2, which matches the optimal threshold characterized
in [10].

The achievability results of this paper complement the
converse obtained in [10, Theorem 4], where it was shown
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that exact recovery is impossible if:{
(
√
a−
√
b)2 < 2 when log ε = o(logn)

(
√
a−
√
b)2 + 2β < 2 when log ε = −(β + o(1)) logn

.

Notation: The matrices I and J are defined as identity
matrix and all-one matrix, respectively. If X is a positive
semidefinite matrix, it is shown by X � 0 and if all the en-
tries of X are non-negative it is shown by X ≥ 0. For any
matrices X and Y, ‖X‖ denote the spectral norm of X and
〈X,Y 〉 denote the inner product of matrices X and Y .

2. DETECTION VIA SDP

This paper considers the binary symmetric stochastic block
model with side information. The number of nodes in the
graph is denoted by n and the community labels are denoted
by −1 and 1. The nodes labels have a uniform, equal and
independent distribution. If a pair of nodes belong to the same
community, an edge between them is drawn with probability
p = a logn

n , otherwise an edge between them is drawn with
probability q = b lognn , where a ≥ b > 0.

A scalar side information is observed independently for
each node, which is the true label (for non-erased case) with
a probability equal to 1 − ε, or zero (for erased case) with a
probability equal to ε, while ε ∈ (0, 1). In this paper, this
model of side information is called partially revealed labels
side information. We denote the adjacency matrix of the ob-
served graph by G, the vector of nodes’ true assignment by
X∗ and the vector of nodes’ side information by Y . The goal
of the exact recovery is to recover X∗ upon observing G and
Y .

The log-likelihood function of the graph and side infor-
mation can be written as

logP(G, Y |X) = logP(G|X) + logP(Y |X).

Then logP(G|X) can be calculated as [10]:

logP(G|X) =
1

2
T1X

TGX +R(n, p, q), (1)

where R(n, p, q) is a constant and T1 = log
(
p(1−q)
q(1−p)

)
.

For the partially revealed side information, the vector of
side information Y is a n × 1 vector whose entries belong to
the set {1,−1, 0}. The log-likelihood function P(Y |X) can
be written as

logP(Y |X) =Y TY log

(
1− ε
ε

)
+ n log(ε), (2)

where Y TY is the number of non-erased elements of Y .
Combining (1) and (2), the ML detector rule can be formu-

lated as

X̂ =argmax
X

XTGX

subject to X ∈ {±1}n

XT1 = 0

XTY = Y TY.

(3)

Due to computational complexity of solving (3), we con-
sider its convex relaxation. This is a common relaxation for
many community detection problems [7, 21]. Define Z ,
XXT . Then Zii = 1 for all i ∈ [n] comes from the con-
straint X ∈ {±1}n. The constraint XT1 = 0 is equivalent
to 〈J, Z〉 = 0. Define W , Y Y T . Then XTY = ±Y TY is
equivalent to 〈Z,W 〉 = (Y TY )2. By relaxing the rank-one
constraint for Z , XXT , we obtain the following semidefi-
nite programming:

ẐSDP =argmax
Z

〈Z,G〉

subject to Z � 0

Zii = 1, i ∈ [n]

〈Z,W 〉 = (Y TY )2

〈Z,J〉 = 0.

(4)

Let Z∗ = X∗X∗T correspond to the true nodes’ labels
andZn ,

{
XXT : X ∈ {±1}n , XT 1 = 0, XTY = Y TY

}
.

Theorem 1. Under the binary symmetric stochastic block
model and partial revealed labels side information, if{
(
√
a−
√
b)2 > 2 when log ε = o(log n)

(
√
a−
√
b)2 + 2β > 2 when log ε = −(β + o(1)) log n

,

then as n→∞, minZ∗∈Zn P(ẐSDP = Z∗) ≥ 1− o(1).
Proof. We start with the following Lemma:

Lemma 1. Suppose there exists D∗ = diag(d∗i ) ≥ 0, λ∗ ∈
R, and µ∗ ∈ R such that S∗ = D∗−G+λ∗J+µ∗W satisfies
S∗ � 0, λ2(S∗) ≥ 0, and S∗X∗ = 0. Then ẐSDP = Z∗ is
the unique solution to (4).

Proof. The Lagrangian function of (4) is given by:

L(Z, S,D, λ, µ) =〈G,Z〉+ 〈S,Z〉 − 〈D,Z − I〉
− λ〈J, Z〉 − µ

(
〈W,Z〉 − (Y TY )2

)
,

where S � 0, D = diag(di), λ ∈ R, and µ ∈ R are La-
grangian multipliers. For any Z that satisfies the constraints
in (4),

〈G,Z〉
(a)

≤ L(Z, S∗, D∗, λ∗, µ∗)

= 〈D∗, I〉+ µ∗(Y TY )2

(b)
= 〈D∗, Z∗〉+ µ∗(Y TY )2

= 〈G+ S∗ − λ∗J− µW,Z∗〉+ µ∗(Y TY )2

(c)
= 〈G,Z∗〉,
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where (a) holds because 〈S∗, Z〉 ≥ 0, (b) holds because
Zii = 1 for all i ∈ [n], and (c) holds because 〈S∗, Z∗〉 =
X∗TS∗X∗ = 0, 〈J, Z∗〉 = 0 and 〈W,Z∗〉 = (Y TY )2.
Therefore, Z∗ is an optimal solution. Now, we will prove
the uniqueness of the optimal solution. To this end, assume Z̃
is an optimal solution. Then

〈S∗, Z̃〉 = 〈D∗ −G+ λ∗J + µ∗W, Z̃〉

= 〈D∗, Z̃〉 − 〈G, Z̃〉+ λ∗〈J, Z̃〉+ µ∗〈W, Z̃〉
(a)
= 〈D∗, Z∗〉 − 〈G,Z∗〉+ λ∗〈J, Z∗〉+ µ∗〈W,Z∗〉
= 〈D∗ −G+ λ∗J + µ∗W,Z∗〉
= 〈S∗, Z∗〉 = 0,

where (a) holds because 〈J, Z∗〉 = 〈J, Z̃〉 = 0, 〈W,Z∗〉 =
〈W, Z̃〉 = (Y TY )2, 〈G,Z∗〉 = 〈G, Z̃〉, and Z∗ii = Z̃ii = 1

for all i ∈ [n]. Since Z̃ � 0 and S∗ � 0 while its second
smallest eigenvalue λ2(S∗) is positive, we can say Z̃ must be
a multiple of Z∗. Also, since Z̃ii = Z∗ii = 1 for all i ∈ [n],
we have Z̃ = Z∗.

It now suffices to show that S∗ satisfies the conditions in
Lemma 1 with probability 1− o(1). In view of Lemma 1,

S∗X∗ = D∗X∗ −GX∗ + λ∗JX∗ + µ∗WX∗

= D∗X∗ −GX∗ + µ∗WX∗.

Thus, in order to satisfy the condition S∗X∗ = 0, we need:

D∗X∗ = GX∗ − µ∗WX∗.

By expanding D∗X∗ we get:

d∗i x
∗
i =

n∑
j=1

Gijx
∗
j − µ∗

n∑
j=1

yiyjx
∗
j .

By multiplying the both sides of this equation by x∗i and
knowing that Gii = 0 for all i ∈ [n], d∗i is obtained as

d∗i =

n∑
j=1

Gijx
∗
jx
∗
i − µ∗yix∗i

n∑
j=1

yjx
∗
j .

where satisfies S∗X∗ = 0.
It remains to show S∗ � 0 and λ2(S∗) > 0 with prob-

ability at least 1 − o(1). In other words, it suffices to show
that

P
{

inf
V⊥X∗,‖V ‖=1

V TS∗V > 0

}
≥ 1− o(1).

Since E[G] = p−q
2 X∗X∗T + p+q

2 J − pI, it follows that
for any V such that V TX∗ = 0 and ‖V ‖ = 1,

V TS∗V =V TD∗V − p+ q

2
V T JV + pV T IV

− V T (G− E[G])V + λ∗V T JV + µ∗V TWV

=V TD∗V +

(
λ∗ − p+ q

2

)
V ∗JV + p

− V T (G− E[G])V + µ∗V TWV.

Let λ∗ ≥ p+q
2 . Since V TD∗V ≥ mini∈[n] d

∗
i and −V T (G−

E[G])V ≥ −‖G− E[G]‖, it follows that

V TS∗V ≥ min
i∈[n]

d∗i + p− ‖G− E[G]‖+ µ∗V TWV.

Lemma 2. For any c > 0, there exists c
′
> 0 such that for

any n ≥ 1, ‖G− E[G]‖ ≤ c′
√
log n with probability at least

1− n−c [19, Thoerem 5].

Lemma 3. Let κ =
√
log n, then P

{
V TWV ≥ κ

}
≤ 1−ε

κ .

Proof. Define hi , viyi for i ∈ [n] and Z ,
∑n
i=1 hi.

Then V TWV = (
∑n
i=1 viyi)

2
= (
∑n
i=1 hi)

2
= Z2. Since

||V || = 1 and the random variables {hi} are i.i.d. with hi ∈
{vi,−vi, 0} with probabilities { 1−ε2 , 1−ε2 , ε}, it follows that
E[Z] = 0 and Var(Z) = (1− ε).

Then using Chebyshev’s inequality for any positive κ:

P
(
V TWV ≥ κ

)
= P

(
(Z − E[Z])2 ≥ κ

)
= P

(
|Z − E[Z]| ≥

√
κ
)

≤ Var(Z)
κ

.

Now let κ =
√
log n, it follows that

P
{
V TWV ≥

√
log n

}
≤ 1− ε√

log n
.

Lemma 4. Define δ , logn
log logn = o(log n), then:

P(d∗i ≤ δ) ≤ εn−
1
2 (
√
a−
√
b)

2
+o(1) + (1− ε)εn.

Proof. Due to symmetry, P(d∗i ≤ δ) can be written as

P(d∗i ≤ δ) = P (Ii −Oi ≤ δ) ε
+ P (Ii −Oi − µ∗Zi ≤ δ + µ∗) (1− ε),

(5)

where Zi =
∑n
j=1,j 6=i yjx

∗
j and Ii − Oi =

∑n
j=1Gijx

∗
jx
∗
i .

Kindly note that Zi ∼ Binom(n−1, 1− ε), Ii ∼ Binom(n2 −
1, p) andOi ∼ Binom(n2 , q). The probability P (Ii −Oi ≤ δ)
can be bounded by applying the Chernoff’s inequality as [10]:

P(Ii −Oi ≤ δ) ≤n−
1
2 ((
√
a−
√
b)2+o(1)). (6)

Let µ∗ < 0 and a constant. Similarly, we find an appropri-
ate bound for the probability P (Ii −Oi − µ∗Zi ≤ δ + µ∗)
by using Chernoff’s inequality:

P(Ii −Oi − µ∗Zi ≤ δ + µ∗) ≤ min
t<0

(
e−t(δ+µ

∗)M(t)
)
,

where M(t) is the moment generating function of Ii − Oi −
µ∗Zi. Then

P (Ii −Oi − µ∗Zi ≤ δ + µ∗)

≤min
t<0

e−t(δ+µ
∗)e

logn
2 (a(et−1)+b(e−t−1))+n log ε+ 1−ε

ε ne−µ
∗t

=min
t<0

e
n
(
log ε+ 1−ε

ε e−µ
∗t+o(1)

)
.
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Since µ∗ < 0 and is a constant, the minimum occurs at t =
−∞. Therefore,

P (Ii −Oi − µ∗Zi ≤ δ + µ∗) ≤ en log ε = εn. (7)

The proof is completed by substituting (6) and (7) in (5).

Choose µ∗ < 0, then in view of Lemmas 2 and 3, with
probability at least 1− o(1),

V TS∗V ≥ min
i∈[n]

d∗i + p+ (µ∗ − c
′
)
√
log n. (8)

Now, we divide the analysis into two scenarios:

• log(ε) = o(log(n)): It follows that

P(d∗i ≤ δ) ≤ n−
1
2 (
√
a−
√
b)

2
+o(1).

Using the union bound, it follows that

P(min
i∈[n]

d∗i ≥
log n

log log n
) ≥ 1− n1−

1
2 (
√
a−
√
b)

2
+o(1).

Assume (
√
a−
√
b)2 > 2, it follows that mini∈[n] d

∗
i ≥

logn
log logn holds with probability at least 1 − o(1). Com-

bining this result with (8), we get that if (
√
a−
√
b)2 >

2, then with probability at least 1− o(1),

V TS∗V ≥ log n

log log n
+ p+ (µ∗ − c

′
)
√
log n > 0,

which proves the first case of Theorem 1.

• log(ε) = −β log(n) + o(log(n)): It follows that

P(d∗i ≤ δ) ≤ n−
1
2 (
√
a−
√
b)

2−β+o(1).

Using the union bound, it follows that

P(min
i∈[n]

d∗i ≥
log n

log log n
) ≥ 1− n1−

1
2 (
√
a−
√
b)

2−β+o(1).

Assume (
√
a −

√
b)2 + 2β > 2, it follows that

mini∈[n] d
∗
i ≥

logn
log logn holds with probability at least

1− o(1). Combining this result with (8), we get that if
(
√
a −
√
b)2 + 2β > 2, then with probability at least

1− o(1),

V TS∗V ≥ log n

log log n
+ p+ (µ∗ − c

′
)
√
log n > 0,

which proves the second case of Theorem 1.

3. NUMERICAL RESULTS

This section explores the relevance of asymptotic results, ob-
tained in this paper, to finite data. Table 1 shows the er-
ror probability of community detection with side informa-
tion when log ε = −β log(n) and a = 3, b = 1. When
β = 0.8, we have (

√
a −
√
b)2 + 2β = 2.136 > 2 and thus,

it can be seen that as n increases, the error probability de-
creases and error occurrences are rare. When β = 0.2, then
(
√
a −
√
b)2 + 2β = 0.936 < 2 and in comparison with the

case β = 0.8 the error occurrences are significant.
Table 2 shows the error probability of community detec-

tion without the side information, i.e. β = 0. When a = 6,
b = 1, and β = 0, then (

√
a −
√
b)2 = 2.10 > 2 and

thus, as n increases, the error probability decreases and er-
ror occurrences are rare. When a = 3 and b = 1, then
(
√
a −
√
b)2 = 0.536 < 2, and it can be seen that in com-

parison with Table 1 where a = 3, b = 1, and β = 0.2, side
information improves the error probability.

With Side Information
a b β n Error Probability
3 1 0.2 100 2.1× 10−2

3 1 0.2 200 1.6× 10−2

3 1 0.2 300 1.3× 10−2

3 1 0.2 400 1.1× 10−2

3 1 0.2 500 1.0× 10−2

3 1 0.8 100 2.7× 10−4

3 1 0.8 200 1.5× 10−4

3 1 0.8 300 8.6× 10−5

3 1 0.8 400 6.4× 10−5

3 1 0.8 500 5.0× 10−5

Table 1. The error probability of community detection for a
generated graph with side information by SDP.

Without Side Information
a b β n Error Probability
3 1 0.0 100 1.4× 10−1

3 1 0.0 200 1.2× 10−1

3 1 0.0 300 1.0× 10−1

3 1 0.0 400 9.5× 10−2

3 1 0.0 500 9.1× 10−2

6 1 0.0 100 6.7× 10−5

6 1 0.0 200 4.0× 10−5

6 1 0.0 300 2.3× 10−5

6 1 0.0 400 1.1× 10−5

6 1 0.0 500 5.0× 10−6

Table 2. The error probability of community detection for a
generated graph without side information by SDP.
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