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ABSTRACT

Spectral clustering has been one of the most popular methods
for clustering multivariate data and has been widely used in
image processing and data mining. Despite its considerable
empirical success, the theoretical properties of spectral clus-
tering are not yet fully developed. In this paper, we derive
upper bounds for the clustering error of spectral clustering
for data samples generated from spherical Gaussian mixture
models. In our analysis, first, the graph Laplacian calculated
from samples is approximated by a reference graph Lapla-
cian which has good spectral properties. Second, we use the
Davis-Kahan perturbation theorem to provide an upper bound
for the sum of squared distances between each projected data
point and its cluster center. Finally, we leverage theoretical
results of Meilă’s to prove an upper bound for the clustering
error from the upper bound for the sum of squared distances.

Index Terms— Spectral clustering, Gaussian Mixture
Models, Optimal clusterings, Error bounds

1. INTRODUCTION

Clustering is a fundamental and ubiquitous problem in var-
ious applications. Spectral clustering has become one of
the most widely-used clustering algorithms. It has been
shown to outperform various classic clustering algorithms
such as k-means [1] on a number of challenging clustering
problems. Suppose we have a data matrix of N samples
V = [v1,v2, . . . ,vN ] ∈ RF×N and a pre-specified number
of clustersK < N , the spectral clustering algorithm first con-
structs a projected data matrix V̂ = [v̂1, . . . , v̂N ] ∈ RK×N ,
where the rows of V̂ correspond to eigenvectors of the K
smallest eigenvalues of the graph Laplacian matrix. Then
the projected data points are clustered into k clusters via
k-means (or other proper clustering algorithms). For a data
matrix with N samples, a K-clustering (or simply a clus-
tering) is defined as a set of pairwise disjoint index sets
C := {C1,C2, . . . ,CK} whose union is {1, 2, . . . , N}. The
sum-of-squares distortion measure with respect to the data
matrix V̂ and a K-clustering C is defined as
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D(V̂,C ) :=

K∑
k=1

∑
n∈Ck

‖v̂n − ĉk‖22, (1)

where ĉk := 1
|Ck|

∑
n∈Ck

v̂n is the cluster center. The k-

means algorithm over V̂ tries to find an optimal clustering
C opt that satisfies

D(V̂,C opt) = min
C
D(V̂,C ), (2)

where the minimization is taken over all K-clusterings. For
brevity, we say such C opt is an optimal clustering of spectral
clustering (over V). Although spectral clustering has enjoyed
success in wide-ranging practical areas, there has been little
work on the theoretical analysis of it [2–9].

A K-component Gaussian mixture model (GMM) is
a generative model that assumes there are K multivari-
ate Gaussian distributions and a probability vector w :=
[w1, w2, . . . , wK ], such that data samples are independently
sampled and the probability that each sample comes from the
k-th component is wk. wk is said to be the mixing weight for
the k-th component, and we use uk,Σk to denote the com-
ponent mean vector and the component covariance matrix
respectively. When Σk = σ2

kI, where I is the identity matrix,
we say the GMM is spherical. Suppose that v1,v2, . . . ,vN
are samples independently generated from a K-component
GMM, the correct target clustering C := {C1,C2, . . . ,CK}
satisfies the condition that n ∈ Ck if and only if vn comes
from the k-th component.

1.1. Main Contributions
We prove if the samples are independently generated from
a K-component spherical GMM with an appropriate separa-
bility assumption, then the clustering error of spectral clus-
tering (with an unnormalized graph Laplacian) can be upper
bounded (by bounding the distance between any optimal clus-
tering and the correct target clustering) with high probability
when the number of samples is sufficiently large. We men-
tion in Section 5 that such theoretical results can be extended
to spectral clustering with normalized graph Laplacians.

1.2. Notations
We use aij or [A]ij to denote the (i, j)-th entry of A.
[N ] represents {1, 2, · · · , N} for any positive integer N .
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‖V‖2, ‖V‖F represent the spectral norm and the Frobenius
norm of V respectively. Diag(w) represents the diago-
nal matrix whose diagonal entries are given by w. The
eigendecomposition of a positive semi-definite (PSD) matrix
L ∈ RN×N is given by L = UΣUT with U ∈ RN×N
being an orthogonal matrix and Σ ∈ RN×N being a diago-
nal matrix of eigenvalues. λn(L) represents the n-th largest
eigenvalue of L and the diagonal entries of Σ are ordered
such that [Σ]nn = λn(L). For any n ∈ [N ], we say that
un := U( : , n) is the n-th eigenvector of L.

2. RELATED WORK

2.1. Spectral Clustering

Given a data matrix V = [v1,v2, . . . ,vN ] ∈ RF×N , we
obtain a similarity matrix A ∈ RN×N by setting

aij = exp
(
−φ‖vi − vj‖22

)
for i, j ∈ [N ], (3)

where φ > 0 is a scaling parameter. Define D to be the di-
agonal matrix in RN×N such that dnn =

∑N
m=1 anm for n ∈

[N ]. The (unnormalized) graph Laplacian L is constructed as
L := D − A. According to [10], L is PSD. Let the eigen-
decomposition (cf. Section 1.2) of L be L = UΣUT . We
have that λN (L) = 0 and uN = e√

N
, where e is the vector of

all ones. The spectral clustering with K clusters first derives
the projected data matrix V̂ := U( : , (N −K + 1): N)T ∈
RK×N . Then the k-means algorithm is performed on V̂ to
obtain an (approximately) optimal clustering.

2.2. Lower Bound on Distortion and the ME Distance

Suppose we have a dataset V̂ = [v̂1, . . . , v̂N ] ∈ RK×N and
a K-clustering C := {C1,C2, . . . ,CK}. Let H ∈ RN×K be
the binary matrix satisfying hnk = 1 if and only if n ∈ Ck.
Let nk = |Ck|, and H̄ := HDiag( 1√

n1
, 1√

n2
, . . . , 1√

nK
). We

have H̄T H̄ = I and the distortion can be written as [11]

D(V̂,C ) = ‖V̂ − V̂H̄H̄T ‖2F. (4)

Let Ẑ be the centralized data matrix of V̂ and define Ŝ :=
ẐT Ẑ. For any twoK-clusterings, we define the so-called mis-
classification error (ME) distance to compare their structures.

Definition 1 Let PK be the set of all permutations of [K].
The misclassification error distance of any two K-clusterings
C 1 := {C 1

1 ,C
1
2 , . . . ,C

1
K} and C 2 := {C 2

1 ,C
2
2 , . . . ,C

2
K} is

dME(C 1,C 2) := 1− 1
N maxπ∈PK

∑K
k=1 |C 1

k

⋂
C 2
π(k)|.

From [12], we know that the ME distance defined above is
indeed a distance. Define τ(δ) := 2δ(1 − δ/(K − 1)). We
have the following lemma [13] which enables us to obtain an
upper bound for the ME distance between a clustering and any
optimal clustering provided the distortion of this clustering is
appropriately upper bounded.

Lemma 1 C := {C1, . . . ,CK} is a K-clustering of V̂ ∈
RK×N and pmax := maxk

|Ck|
N , pmin := mink

|Ck|
N . Define

δ := D(V̂,C )−λK(Ŝ)

λK−1(Ŝ)−λK(Ŝ)
. Then if δ ≤ 1

2 (K−1) and τ(δ) ≤ pmin,

dME(C ,C opt) ≤ pmaxτ(δ), (5)

where C opt is an optimal K-clustering for V̂.

3. THE MAIN THEOREM

Let Y = e−X
2

, where X follows the Gaussian distribution
N (µ, σ2), we have E[Y ] = 1√

2σ2+1
exp

(
− µ2

2σ2+1

)
, and

Var[Y ] = 1√
4σ2+1

exp
(
− 2µ2

4σ2+1

)
− (E[Y ])

2. Let

sij :=
(
2φ(σ2

i + σ2
j ) + 1

)−F
2 exp

(
− φ‖ui − uj‖22

2φ(σ2
i + σ2

j ) + 1

)
,

tij :=
(
4φ(σ2

i + σ2
j ) + 1

)−F
2 exp

(
− 2φ‖ui − uj‖22

4φ(σ2
i + σ2

j ) + 1

)
−s2ij

for i, j ∈ [K]. Let T = maxi,j tij and So = maxi 6=j sij . For
p ∈ [0, K−12 ], we define the function ζ(p) := p

1+
√

1−2p/(K−1)
.

Let wmin := mink wk, wmax := maxk wk and ck =
wkskk +

∑
k′ 6=k wk′sk,k′ . Our main theorem is as follows:

Theorem 2 Suppose the columns of V ∈ RF×N are inde-
pendently generated from a K-component spherical GMM
and N > K. Assume that there is a ξ ∈ (0, 1), such that
mink ck −

√
2KSo > 2

√
T/
√
ξ. Further assume

4(K − 1)T/ξ(
mink ck −

√
2KSo − 2

√
T/
√
ξ
)2 < ζ(wmin). (6)

Let C := {C1,C2, . . . ,CK} be the correct targetK-clustering
corresponding to the spherical GMM. Assume that ε > 0 is
sufficiently small.1 Then with probability at least 1 − ξ −
Ke exp

(
−cNε2

)
, dME(C ,C opt) is upper bounded by

τ

 4(K − 1)T/ξ(
mink ck −

√
2KSo − 2

√
T/
√
ξ − ε

)2
 (wmax + ε),

(7)

where c > 0 is a constant depending on {wk}k∈[K], and C opt

is an optimal K-clustering of spectral clustering over V.

Remark 1 Considering the special case that σ2
1 = . . . =

σ2
K = σ2 and ‖ui − uj‖2 = d for all 1 ≤ i 6= j ≤ K.

Choosing φ > 0 to be small such that φd2 � 1 and Fφσ2 �

1ε ≤ min
{
wmin

2
,mink ck −

√
2KSo − 2

√
T/
√
ξ
}

and ε is chosen

such that 4(K−1)T/ξ

(mink ck−
√
2KSo−2

√
T/
√
ξ−ε)2

< ζ(wmin − ε).
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1. We show (cf. Section 4.5 to follow) that for this case, the
separability assumption (6) can be expressed as

d >
2σ
√
wmin

(
2F

ξ

)1/4
[

1 +

(
2(K − 1)

wmin

)1/4
]
. (8)

Remark 2 The k-means algorithm often gets stuck at local
optima and is not able to find a globally optimal solution. For
this issue, note that our theoretical results can be easily ex-
tended to provide upper bounds for the ME distance between
any approximately optimal clustering and the correct target
clustering. See Section 5.1 in [14] for a detailed discussion.

4. PROOF OF THE MAIN THEOREM
Before proving the theorem, we prove the following lemmas.

4.1. Bounding the Distance between the Empirical and
Reference Graph Laplacians
First, we construct a reference graph Laplacian matrix L̄ and
derive an upper bound for the spectral norm of L− L̄. Let the
reference similarity matrix Ā ∈ RN×N satisfy that

ān1,n2
= sij if n1 ∈ Ci, n2 ∈ Cj , (9)

for n1, n2 ∈ [N ], n1 6= n2. We set ānn = 1 for all n ∈
[N ]. Constructing the diagonal matrix D̄ ∈ RN×N such that
d̄nn =

∑N
m=1 ānm and set L̄ = D̄ − Ā. Let nk = |Ck| for

k ∈ [K] and set E = L − L̄, we have the following lemma
which bounds the distance between L and L̄.
Lemma 3 For any ξ ∈ (0, 1), with probability at least 1− ξ,

‖E‖2 <
2N
√
T√
ξ

. (10)

Proof Splitting E as E = ED + EO, where ED and EO are
the diagonal and off-diagonal parts of E respectively. Note
that E[eij ] = 0 for i, j ∈ [N ]. We have

E
[
‖E‖22

]
≤ 2

[
E
[
‖ED‖22

]
+ E

[
‖EO‖22

]]
(11)

≤ 2E
[
‖ED‖22

]
+ 2E

[
‖EO‖2F

]
(12)

= 2 max
n∈[N ]

E[e2nn] + 2
∑
i6=j

E
[
e2ij
]

(13)

= 2 max
n∈[N ]

Var[enn] + 2
∑
i 6=j

Var[eij ] (14)

= 2 max
n∈[N ]

Var[enn] + 2
∑
i 6=j

Var[aij ] (15)

≤ 2(N − 1)2T + 2

K∑
k=1

nk

(nk − 1)tkk +
∑
k′ 6=k

nk′tk,k′


≤ 4N2T. (16)

By Markov inequality, we have that for any ξ ∈ (0, 1),

P(‖E‖22 ≥
1

ξ
E
[
‖E‖22

]
) ≤ ξ, (17)

which completes the proof. �

Remark 3 Note that it is important to split E into diagonal
and off-diagonal parts. Otherwise, we will derive an upper
bound for E [‖E‖2] from the upper bound of E [‖E‖F], which
is O(N3/2), and is disastrously loose for further derivations.

4.2. Spectral Properties of L̄

Next, we describe the spectral properties of L̄.

Lemma 4 For any k ∈ [K], let gk :=
nksk+

∑
k′ 6=k nk′sk,k′

N .
We have that Ngk is an eigenvalue of L̄ with multiplicity (at
least) nk − 1. Moreover, if

√
2KSo < mink gk, we have that

λ̄N−K+1 ≤
√

2KNSo and for N −K < n < N , the eigen-
vector ūn satisfies that ūn(i) = ūn(j) if the i-th and the j-th
samples are generated from the same Gaussian component.

Proof We have that if g1, . . . , gK are all distinct, then

{x : (L̄−NgkI)x = 0}

= {x :
∑
n∈Ck

xn = 0, xn = 0 for n /∈ Ck}. (18)

Therefore,Ngk is an eigenvalue of L̄ with multiplicity nk−1.
If the gk’s are not all distinct. For any g ∈ {gk}k∈[K]. Let
kg := {k ∈ [K] : gk = g}. Then the multiplicity of eigen-
valueNg is

∑
k∈kg (nk−1). On the other hand, if we consider

the eigenvector x in the form that xn = αk if n ∈ Ck. Then
the linear equation system L̄x = λx can be reformulated as

Fα = λα, (19)

where λ is the corresponding eigenvalue, α = [α1, α2, . . . , αK ]T

and F ∈ RK×K satisfies that

fk,k′ = −nk′sk,k′ if k 6= k′, fkk =
∑
k′ 6=k

nk′sk,k′ . (20)

Similar to that for L̄, we have that F is PSD with the smallest
eigenvalue being 0. In addition, all the eigenvalues of F are
also eigenvalues of L̄. Splitting F as F = FD + FO, simi-
lar to that in the proof of Lemma 3, we derive that ‖F‖22 ≤
2KN2S2

o . Therefore, if
√

2KSo < mink gk, we have that
λN−K+1(L̄) = ‖F‖2 ≤

√
2KNSo and forN−K < n < N ,

ūn satisfies that ūn(i) = ūn(j) if the i-th and the j-th sam-
ples come from the same Gaussian component. �

Remark 4 A special case is that for any k 6= k′, sk,k′ = s
(e.g., when σ2

1 = . . . = σ2
K = σ2 and ‖ui − uj‖2 = d for all

i 6= j). For this case, λN−1(L̄) = . . . = λN−K+1(L̄) = Ns.

4.3. Bounding the Distortion for Projected Data Matrix
Let the eigendecomposition of L̄ be L̄ = ŪΣ̄ŪT . In addi-
tion, let B̄ = Ū( : , (N −K+ 1): N), B = U( : , (N −K+

1): N) (i.e., BT = V̂), Λ̄ = Σ̄((N −K+ 1): N, (N −K+
1): N) and Λ = Σ((N −K+1): N, (N −K+1): N). Let
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ŪN−K = Ū( : , 1: (N − K)), Σ̄N−K = Σ̄(1 : (N −
K), 1: (N − K)), UN−K = U( : , 1: (N − K)) and
ΣN−K = Σ(1 : (N − K), 1: (N − K)). In the follow-
ing lemma, we provide an upper bound for the distortion
D(V̂,C ) using the Davis-Kahan perturbation theorem [15].

Lemma 5 If η := N mink gk − (
√

2KNSo + ‖E‖2) > 0,
then we have that

D(V̂,C ) ≤ (K − 1)‖E‖22
η2

. (21)

Proof By (19), the subspaces spanned by the columns of H̄
and B̄ are the same. Thus H̄H̄T = B̄B̄T . In addition,

D(V̂,C ) = ‖V̂ − V̂H̄H̄T ‖2F = ‖BT −BT B̄B̄T ‖2F (22)

= ‖BT ŪN−KŪT
N−K‖2F = ‖BT ŪN−K‖2F. (23)

Note the eigendecompositions of L̄ and L can be written as

L̄ = ŪN−KΣ̄N−KŪT
N−K + B̄Λ̄B̄T , (24)

L = UN−KΣN−KUT
N−K + BΛBT . (25)

By |λN−K+1(L)− λN−K+1(L̄)| ≤ ‖E‖2, we have

λN−K+1(L) ≤ λN−K+1(L̄) + ‖E‖2. (26)

Then if η > 0, we have that the eigenvalues of Σ̄N−K
are contained in the interval [N mink gk, N maxk gk], and
the eigenvalues of Λ are excluded from [N mink gk −
η,N maxk gk + η]. By the Davis-Kahan theorem,

‖BT ŪN−K‖2 ≤
‖E‖2
η

. (27)

We further obtain that

D(V̂,C ) = ‖BT ŪN−K‖2F (28)

≤ (K − 1)‖BT ŪN−K‖22 ≤
(K − 1)‖E‖22

η2
, (29)

where ‖BT ŪN−K‖F ≤
√
K − 1‖BT ŪN−K‖2 because that

BT ŪN−K ∈ RK×(N−K) contains at most K − 1 non-zero
singular values (the last row of it contains all zeros). �

4.4. Proof of the Main Theorem
Based on the above lemmas, we present our final proof.

Proof of Theorem 2 Let BK−1 = B( : , 1: (K − 1)). We
have V̂ = [BK−1,

e√
N

]T and note that the sum of the entries

of each column of BK−1 is 0. The centralized matrix of V̂ is

Ẑ := [BK−1,0]T ∈ RK×N . (30)

For Ŝ = ẐT Ẑ, we have λK−1(Ŝ) = 1 and λn(Ŝ) = 0 for
n ≥ K. Therefore, D(V̂,C )−λK(Ŝ)

λK−1(Ŝ)−λK(Ŝ)
= D(V̂,C ). Let pmin =

mink
nk

N . By the concentration inequality for sub-Gaussian
random variables [16], for any 0 < ε ≤ wmin

2 , there is a
positive constant c depending on {wk}k∈[K] such that

P
(∣∣∣nk
N
− wk

∣∣∣ ≥ ε) ≤ e exp(−cNε2) for k ∈ [K]. (31)

Note that ζ(·) is monotonically increasing on [0, K−12 ].
Then if there exists ε > 0 and ξ ∈ (0, 1), such that

4(K−1)T/ξ
(mink ck−

√
2KSo−2

√
T/
√
ξ−ε)

2 < ζ(wmin − ε) and ε ≤

min{wmin

2 ,mink ck −
√

2KSo − 2
√
T/
√
ξ}, we have that

with probability at least 1− ξ −Ke exp
(
−cNε2

)
,

D(V̂,C ) ≤ (K − 1)‖E‖22
η2

(32)

≤ 4(K − 1)T/ξ(
mink ck −

√
2KSo − 2

√
T/
√
ξ − ε

)2 (33)

≤ ζ(wmin − ε) ≤ ζ(pmin). (34)

Or equivalently, τ
(
D(V̂,C )

)
≤ pmin. By Lemma 1, we

obtain the error bound given in (7). �

4.5. Discussion about the Special Case
Considering the special case described in Remark 1. Let Sd =
skk for k ∈ [K] and So = sij for i 6= j. We have that for this
special case, λN−K+1(L̄) = . . . = λN−1(L̄) = NSo and the
separability assumption (6) can be modified to be written as

4(K − 1)T/ξ(
wmin(Sd − So)− 2

√
T/
√
ξ
)2 < ζ(wmin). (35)

By Taylor approximation, we have that

Sd − So ≈ φd2,
√
T ≈ 2

√
2Fφσ2. (36)

Note that ζ(wmin) ≥ wmin

2 . Simplifying (35), we obtain (8).

5. EXTENSIONS

We may consider spectral clustering with normalized graph
Laplacians. For example, the normalized graph Laplacian
Lrw is defined as

Lrw := D−1L = I−D−1A. (37)

It is easy to derive similar theoretical results for such a nor-
malized version of spectral clustering. In more detail, let
L̄rw := D̄−1L̄ and Erw = Lrw − L̄rw. We make use of the
inequality that ‖L̄rw − Lrw‖2 ≤ ‖D̄−1 − D−1‖2‖L̄‖2 +
‖D−1‖2‖L̄ − L‖2 to derive an upper bound for ‖Erw‖2,
which is approximately 3

√
T/
√
ξ

mink ck−
√
T/
√
ξ

, under certain con-

ditions. We similarly analyze the spectral properties of L̄rw.
Then we utilize the Davis-Kahan perturbation theorem and
Lemma 1 to derive a theorem which is similar to Theorem 2.
Due to space limit, we omit the details.
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