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ABSTRACT

This study proposes a method that speeds up computing persistent
homology of time series data. Persistent homology is recently used
for clutering time series data and detecting periodicity of them. The
proposed method uses line segments to approximate a trajectory in
delay-coordinate space. Cubic Bézier curves are fitted to given data
and divided into line segments. The distance between line segments
is defined and calculated to construct the Vietoris-Rips complex of
segments. Exploiting the Vietoris-Rips complex enables us to use
fast software like Ripser. In experiments, the performance of the
proposed method is compared with that of the ordinary method.
The proposed method was 30 times or more faster than the ordi-
nary method. It also smooths noisy data and produces more precise
persistent homology.

Index Terms— Topological signal analysis, persistent homol-
ogy, delay-coordinate embedding, Vietoris-Rips complex

1. INTRODUCTION

The combination of persistent homology [1, 2] and attractor recon-
struction [3, 4] is applied for detecting periodicity from time series
data [5, 6] and clustering time series data [7, 8, 9, 10, 11, 12]. Attrac-
tor reconstruction is a method that recovers the shape of an attractor
from observed time series. Persistent homology analyzes the shape
of a reconstructed attractor focusing on holes and the summarized
data is used as the feature for machine learning techniques. This
combination has difficulty; it requires long computational time and
huge memory. For example, it takes several days and comsumes
about a half of terabytes of memory for thousands of points.

We propose a method that reduces the computational time and
memory by fitting cubic Bézier curves to time series and dividing
them into segments; the time series is approximated by line seg-
ments. The Vietoris-Rips complex is often used to compute per-
sistent homology of a point cloud. Because it is defined for points
in metric space, the Vietoris-Rips complex of line segments can be
constructed by defining the distance between segments. Defining
and computing the distance between segments are straightforward
because they are convex sets and can be parametrized.

In this study, the proposed method is applied to two kinds of
data: an irrational flow on a 2-torus and the signals of Japanese vow-
els. The experiments show that the proposed method is tens or more
faster than the ordinary method and it comsumes tens or more less
memory. In addition, the proposed method smooths noisy signals
and computes the persistent homology nearer to the original signals.

This research was partially supported by AMED under Grant Number
JP18dm0307009 and NEC Corporation.

These results make the combination of persistent homology and at-
tractor reconstruction more practical.

There is the Witness complex [13], which reduces the size of
simplicial complexes for generic point clouds. The Witness com-
plex chooses landmark points and groups the nearest neighbor points
of each landmark point. The proposed method is compared to the
Witness complex. In the last experiment, the Witness complex re-
covered the 1st persistent homology less precisely than our method.
Although the Witness complex is not limited for continuous curves,
our experiment suggests that our specialized method for curves pro-
duces better results. Our method has a merit in this point.

2. BACKGROUND

2.1. Persistent Homology

Persistent homology [1, 2] is an algebraic tool for counting the num-
ber and the widths of holes of a given shape. In mathematics, ho-
mology groups count arbitrary dimensional holes in a space. The
given space is a topological space or a simplicial complex that ap-
proximates the topological space. In real world, however, we cannot
obtain a whole topological space or a simplicial complex. Usually,
we can only obtain a set of points. Therefore the method to construct
a simplicial complex from a set of points is required.
Vietoris-Rips complex. The Vietoris-Rips complex [2] is a simpli-
cial complex defined with a set of points A and a threshold r. The
Vietoris-Rips complex of A with threshold r is defined by

VRr(A)
=
{
|xi0xi1 · · ·xiq | :q-simplex | ∀j, k, d(xij , xik ) ≤ r)

}
,

(1)

where d(·, ·) is a distance function.
Filtration. Although we got be able to construct a simplicial com-
plex from a set of points, we must choose the threshold of Vietoris-
Rips complex. We can avoid determining the threshold by using
the filtration of simplicial complex. For a simplicial complex K =
{σi}mi=1, a filtration of K is a sorted complex K = {σι(i)}mi=1,
where ι is a total order and each subset K(l) = {σι(i)}li=1 is a sim-
plicial complex and a subcomplex ofK. The simplices in a Vietoris-
Rips complex VRr(A) are sorted by the value of the filter function
f in ascending order. The filter function f is defined as follows:

f(σ) =


0, if dimσ = 0,

d(u, v), if dimσ = 1,

maxτ≺σ f(τ), otherwise,
(2)

where u and v are the vertexes of 1-simplex σ, and τ ≺ σ means
that τ is a face of σ.
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Practically the threshold of the Vietoris-Rips complex is set to
the infinity. We estimate the number of simplexes in VR∞(A) to
consider the performance of computing persistent homology. Let n
be the number of points in the setA. The complex VR∞(A) consists
of an n-simplex and its faces because all of vertexes are connected
each other. The upper dimension of simplexes is restricted to some
value in practice. When the upper dimension is set to q−1, the com-
plex VR∞(A) consists of k-simplexes where k is an integer varying
from 0 to q. The number of k-simplexes in VR∞(A) is

(
n
k

)
. Thus

the number of simplexes in VR∞(A) with upper dimension restric-
tion is given by

∑q
k=0

(
n
k

)
and its order is O(nq).

Persistent homology. Persistent homology is a variation of homol-
ogy group and is defined for filtered simplicial complexes. Suppose
that a filtered simplicial complex is given: K = {σi}mi=1. We define
the boundary matrix of K by

Dij =

{
1, if dimσi = dimσj − 1 and σi ≺ σj ,
0, otherwise.

(3)

The boundary matrix D is a matrix in Zm×m2 . A variation of col-
umn or row reduction reveals the image and kernel of the boundary
matrix [15, 16]. By pairing the columns of the reduced matrix, we
can obtain the generators of persistent homology group. A generator
of persistent homology corresponds to a hole in a given shape. A
generator is born at some step in the filtration and it will die at other
step or will not die.
Persistence diagram. Persistence diagram [2] is a way to visualize
a persistent homology group. We denote the birth filtration value of a
generator α of q-th persistent homology PHq by b(α) and the death
filtration value of α by d(α). The persistence diagram of a persistent
homology PHq(A) is defined as follows:

Dgmq(A)
= {(b(α), d(α)) | α ∈ PHq(A)} ∪ {(x, x) | x ∈ R ∪ {∞}}.

(4)
The first term of the right-hand side of Eq.(4) is a multiset because
the pair of the birth and the death filtration values may be multiple.

There is a distance function between persistence diagrams. The
bottleneck distance [17] is defined for two persistence diagrams X
and Y :

W∞(X,Y ) = inf
η:X→Y

sup
α∈X
‖α− η(α)‖∞, (5)

where η ranges over all bijections from X to Y and the norm is
defined as ‖α‖∞ = ‖(b, d)‖∞ = max{|b|, |d|}.

2.2. Attractor Reconstruction

To analyze time series data, we assume that there are differential
equations that govern it. We can usually acquire the time series data
projected onto the space with the dimension smaller than that of the
original phase space. The delay-coordinate embedding can recover
the original trajectory from the observed time series [3, 4]. Takens’
theorem guarantees that the recovered shape is diffeomorphic to the
attractor in the original phase space under some conditions. For a
time series {x(t)}nt=1, the delay-coordinate vector with delay a and
dimension d is defined as

y(t) = (x(t), x(t− a), x(t− 2a), . . . , x(t− (d− 1)a)). (6)

The series of the delay-coordinate vector {y(t)}nt=1 is in d-dimensional
Euclidean space.

We can combine persistent homology and attractor reconstruc-
tion. Because the series A = {y(t)}nt=1 is in d-dimensional Eu-
clidean space, a Vietoris-Rips complex can be constructed from it.

10-1

100

101

102

103

104

105

 1000  2000  3000  4000  10000

T
im

e
 [
s
e
c
]

Number of Points

Ordinary

Proposed (r=10)

Proposed (r=6)

Proposed (r=3)

Fig. 1. Computational time of persistent homology of the 2-torus.
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Fig. 2. Computational memory of persistent homology of the 2-
torus.

This series consists of the sampled points of the recovered trajec-
tory. Then the persistent homology of A can be computed. The
persistence diagram ofA can be used as a feature for machine learn-
ing techniques. Therefore the combination of persistent homology
and attractor reconstruction enables us to classify time series data.

3. PROPOSED METHOD

Although the persistent homology of time series data can be used
for clustering, the resources required to compute persistent homol-
ogy are quite large. However, fortunately, the trajectory of differ-
ential equations is a continous curve and we can exploit this fact.
First the given series is divided into groups of several tens of points.
Second a cubic Bézier curve is fitted to the points of each group.
Third the fitted Bézier curves are divided into line segments. Then
the Vietoris-Rips complex of line segments is constructed and its
persistent homology groups are computed.

3.1. Fit a cubic Bézier curve

In this method, fitting a cubic Bézier curve is implemented with the
least squares method. The series of points and their sampling time
are given: {(xi, ti) | xi ∈ Rd}li=1, where t0, t1, . . . , tl satisfy the
inequalities 0 ≤ t0 < t1 < · · · < tl ≤ 1. Let p0, p1, p2 and p3 be
the control points of a cubic Bézier curve. The cubic Bézier curve is
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Fig. 3. Bottleneck distance between the original data of 2-torus and the noised data of that.The left-side blank bars show the distances between
the original and the ordinary Vietoris-Rips complex of the noised data.The right-side hatched bars show the distances between the original
and the Vietoris-Rips complex of the segments fitted to the noised data.

parametrized as p(t) =
∑3
i=0

(
3
i

)
(1− t)3−itipi for 0 ≤ t ≤ 1. The

squared error function is defined as

L(p0, p1, p2, p3) =

l∑
i=1

‖p(ti)− xi‖2, (7)

where ‖ · ‖ means that the Euclidean norm. The cubic Bézier curve
is fitted by finding the control points that minimize the squared er-
ror function. Solving the equation gradL = 0 achieves the mini-
mization. The equation gradL = 0 is expanded into the equations
Ap(j) = b(j) (j = 1, 2, . . . , d), where A is a 4× 4 matrix, p(j) and
b(j) are 4-dimensional vector and they are defined as follows:

A =

((
3

i− 1

)(
3

j − 1

)
l∑

k=0

(1− tk)6−(i+j−2)ti+j−2
k

)
i=1,...,4
j=1,...,4

,

(8)

p(j) =
(
p
(j)
0 p

(j)
1 p

(j)
2 p

(j)
3

)>
, (9)

and

b(j) =

((
3

i− 1

)
l∑

k=1

(1− tk)3−(i−1)t
(i−1)
k x

(j)
k

)>
i=1,...,4

, (10)

where p(j)i and x(j)k mean that the j-th coordinate of pi and xk re-
spectively. This linear equation is solved with LU decomposition.

3.2. Divide into line segments

The fitted cubic Bézier curve is divided into line segments. The
number of line segments is set as a fraction of the number of points
to which the curve is fitted. Let r be the number of line segments
into which the curve is divided. First the unit interval [0, 1] is
uniformly divided into r intervals; we obtain the intervals [t0, t1],
[t1, t2], . . . , [tr−1, tr], where ti = i/r for i = 0, 1, . . . , r. The
left and right boundary of each intervals are mapped into the fitted
Bézier curve and the mapped boundaries are turned into the end-
points of line segment. In other words, we obtain the line segments
−−−−−−→
p(t0)p(t1),

−−−−−−→
p(t1)p(t2), . . . ,

−−−−−−−−→
p(tr−1)p(tr).

3.3. Distance between line segments

In order to construct the Vietoris-Rips complex of line segments, we
must calculate the distance between them. The distance between line

segments is defined as a special case of the distance between sets.
Let −−→q0q1 and −−→r0r1 be line segments. The distance between −−→q0q1 and
−−→r0r1 is defined as

d(−−→q0q1,−−→r0r1) = min
q∈−−→q0q1, r∈−−→r0r1

d(q, r). (11)

These line segments are parametrized as q(s) and r(t) respectively,
where s and t are in the unit interval. The distance is calculated by
minimizing the function f(s, t) = d(q(s), r(t))2 = ‖q(s)−r(t)‖2.
Although the equation gradf = 0 is a linear equation, this equation
cannot be solved in the case where the two line segments are parallel.
Thus the function f is minimized by the gradient descent method.

4. EXPERIMENT

The proposed method was tested with a trajectory of an irrational
flow on a 2-torus and Japanese vowels signal data. In the following
experiments, the Ripser [14] was used for computing the persistent
homology of Vietoris-Rips complex and the computer used for ex-
periments has 2.40GHz Xeon E5-4640 and 1TiB of memory. The
upper dimension of the persistent homology was set to 2.

4.1. Irrational flow on the 2-torus

The irrational flow on the 2-torus is defined as

du

dt
= α mod 1,

dv

dt
= β mod 1, (12)

where (u, v) ∈ [0, 1] × [0, 1] and the ratio α/β is irrational. It is
known that the solution of Eq. (12) covers [0, 1] × [0, 1] densely
after sufficiently long time. In this experiment, we set α = 1 and
β =

√
2. Then the trajectory of the irrational flow is mapped into

3-dimensional Euclidean space. The mapping is defined as
x1 = R cosu+ r cosu cos v,

x2 = R sinu+ r sinu cos v,

x3 = r sin v,

(13)

where R and r are positive real values and they satisfy R > r. We
set R = 2 and r = 1.

The trajectory was developped from t = 0 to t = 50π and it was
sampled in n = 2000, 3000 and 4000 points. Then cubic Bézier
curves were fitted to each series of sampled points; the number of
points in each group was about 30. Finally each fitted Bézier curve
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was divided into line segments. The number of line segments was
set to r = 3, 6 and 10.

The first experiment was performance comparison. The per-
formance of computing the persistent homology of the ordinary
Vietoris-Rips complex was compared with that of computing that of
the Vietoris-Rips complex of segments.

Figure 1 shows the plot of computational time versus the number
of points of the trajectory. Figure 2 shows the plot of computational
memory versus the number of points of the trajectory. The order
of time and space complexity is about O(n3.25). Even the case of
r = 10 requires about 45 times shorter and 30 times smaller than
the case of the ordinary Vietoris-Rips complex. Because we set l '
30 and r = 10 in this case, the number of points that constuct the
Vietoris-Rips complex was reduced to about 10/30 = 1/3. It is
natural that the computational time and memory were reduced to
about (1/3)3.25 ' 35. The cases of r = 3 and r = 6 require
shorter time and smaller memory similarly. The ordinary Vietoris-
Rips complex required about 630 GiB of memory for 4000 points. It
is too large to use persistent homology in practical use. However the
proposed method with r = 3 and that with r = 6 required less than
10 GiB of memory and less than 100 seconds of time. The proposed
method enables us to use persistent homology practically.

Second the proposed method was applied to noisy data. The
noisy data was generated by adding 10% gaussian noise of the root
mean squares of the trajectory of the irrational flow. The number of
the points in each group was set to l ' 30. Each fitted Bézier curve
was divided into r = 6 segments.

We calculated the bottleneck distance between the persistent
homology of the ordinary Vietoris-Rips complex of the original data
and that of the Vietoris-Rips complex of the segments fitted to the
noisy data. We also calculated the bottleneck distance between that
of the original data and that of the noisy data. To simplify the de-
scription, let Tn be the original torus, where n is the number of sam-
pled points. Let Nn be the noisy torus and Sn be the segments ob-
tained by fitting. Paraphrasing the first two sentences, we calculated
W∞(Dgmq(Tn),Dgmq(Sn)) and W∞(Dgmq(Tn),Dgmq(Nn))
for q = 0, 1, 2 and n = 2000, 3000, 4000. Let dsegment(q, n) be
the former distance and dpoint(q, n) the latter. In Fig.3 the distances
dpoint(q, n) were compared with the distances dsegment(q, n). The
graphs in Fig.3 show the distances of q = 0, q = 1 and q = 2 from
left to right. The blank bars show the distances dpoint(q, n) and the
hatched bars show the distances dsegment(q, n). For every value of q
and n, the distance dsegment(q, n) is less than dpoint(q, n). This fact
means that the proposed method has smoothing effect and it can
compute more precise persistent homology under noisy observation.

4.2. Japanese vowels

The proposed method was also applied to Japanese vowels. The
data was obtained from the Vowel Database: Five Japanese Vowels
of Males, Females and Children Along With Relevant Physical Data

Table 1. Performance comparison of computing the persistent ho-
mology of speech signals.

Computational Time Computational Memory
Vowel Ordinary Proposed Witness Ordinary Proposed Witness

/a/ 290 sec < 1 sec < 1 sec 12.5 GiB 0.11 GiB 0.14 GiB
/e/ 312 sec < 1 sec < 1 sec 11.5 GiB 0.09 GiB 0.09 GiB
/i/ 268 sec < 1 sec < 1 sec 11.5 GiB 0.09 GiB 0.10 GiB
/o/ 291 sec < 1 sec < 1 sec 11.5 GiB 0.09 GiB 0.09 GiB
/u/ 277 sec < 1 sec < 1 sec 11.5 GiB 0.09 GiB 0.09 GiB

(JVPD) [18]. The choosed data was the utterance of 27-year-old fe-
male speaker. The utterance was recorded in 44.1 kHz, 16 bits PCM
format and contains the signals of five Japanese vowels /a/, /e/, /i/,
/o/ and /u/. The signals were rescaled to range from -1 to 1. The sig-
nals of these vowels were embedded into the delay-coordinate space
of 10 dimension with delay of 10 steps. Then the 1100 steps, almost
equal to 125 milliseconds, of each embedded signal were extracted.
Each embedded signal was divided into the groups of l ' 10 points
and a cubic Bézier curve was fitted to each group of points, and then
each Bézier curve was divided into r = 2 segments. Therefore we
get about 220 segments. The Witness complexes [13] of the vow-
els were also constructed for comparison in the manner explained in
Section 2.4 of [13] and their persistent homology was analyzed with
the Ripser. The number of the landmarks was 220 and they were
chosen by the maxmin selection.

Table 1 shows the comparison between the ordinary method and
the proposed method applied to compute the persistent homology
of the speech signals. It also shows the comparison with the Wit-
ness complex. The proposed method and the Witness complex were
about 300 times faster than the ordinary method and took 100 times
smaller memory than it. Table 2 shows the bottleneck distance be-
tween the persistent homology computed with the ordinary method
and that with the proposed method. It also shows the comparison
with the Witness complex. The distances of the proposed method
took small values except the 1st persistent homology of the vowel
/a/. The maximum of filtration value is

√
10 ' 3.16 because the

space is the ten times product of [−1, 1]. These distances took the
value of 0.131 at most. This value is about 4% of the maximum fil-
tration value. However, the distance of the 1st persistent homology
of the vowel /a/ was 0.644; this value is about 20% of the maximum
filtration value. The reason of this result may be the original data
was noisy and the noise was smoothed out but it cannot be proven.
In contrast the distances of 1st persistent homology of the Witness
complex were much larger than the proposed method.

5. CONCLUSION

We proposed a method that makes computing the persistent homol-
ogy of time series data faster and smooths the observation noise
out. This means that the proposed method enables practical use of
the combination of persistent homology and attractor reconstruction.
Moreover, the proposed method brings noise robustness to it. There
is a issue whether the classification performance will be improved
with our method. More experiments are necessary to show the ad-
vantages.

Table 2. The comparison of the Bottleneck distances between the
ordinary method and the proposed method (left) and those between
the ordinary method and the Witness complex (right).

Proposed Method Witness Complex
Vowel 0th 1st 2nd 0th 1st 2nd

/a/ 0.064 0.644 0.131 0.126 0.645 0.177
/e/ 0.029 0.032 0.047 0.026 0.217 0.038
/i/ 0.026 0.027 0.014 0.018 0.292 0.034
/o/ 0.021 0.068 0.011 0.022 0.279 0.069
/u/ 0.016 0.032 0.020 0.015 0.332 0.029
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