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ABSTRACT

We consider the problem of detecting whether a tensor sig-
nal having many missing entities lies within a given low di-
mensional Kronecker-Structured (KS) subspace. This is a
matched subspace detection problem. Tensor matched sub-
space detection problem is more challenging because of the
intertwined signal dimensions. We solve this problem by pro-
jecting the signal onto the KS subspace, which is a Kronecker
product of different subspaces corresponding to each signal
dimension. Under this framework, we define the KS sub-
spaces and the orthogonal projection of the signal onto the
KS subspace. We prove that reliable detection is possible as
long as the cardinality of the missing signal is greater than
the dimensions of the KS subspace by bounding the residual
energy of the sampling signal with high probability.

Index Terms— Kronecker-Structured models, tensor
subspace detection, missing data.

1. INTRODUCTION

The matched subspace detection problem arises in different
scientific areas. This includes medical imaging such as in im-
age representation [1], in shape detection [2], communication
MIMO network systems [3, 4], matrix completion [5, 6] etc.,
where we need to detect whether a given signal lies within a
subspace. The matched subspace detection is a well-studied
problem [7, 8]. However, this problem becomes more chal-
lenging when the signal is not completely observable that is
only a small subset of the signal entries are known and based
on this observation we want to test whether a signal belongs
to a given subspace.

To deal with subspace detection with missing informa-
tion, [9] and [10] provides a way to deal with missing in-
formation in the signal. These available methods make an
implicit assumption that the signal is present in vectorized
form and convert a multi-dimensional signal into a single di-
mension before testing. Many real-world signals such as dy-
namic scene video [11] or tomographic images are inherently
multi dimensional, which capture the spatial and temporal
correlations within the data. However, by vectorizing the
signal we lose the multi-dimensional structure of the data,
which could be used to enhance the performance of the detec-

tor. Previous works, for example, [12], consider general sub-
space structure, whereas our work applies a subspace model
to tensors by supposing that each mode of the tensor lies ap-
proximately along a subspace. Equivalently, we preserve this
multi-dimensional structure of the signal by projecting the
signal onto Kronecker-Structured (KS) subspace, which is a
Kronecker product of a number of subspaces corresponding to
the dimensionality of the signal while observing only a small
subset of the elements of the signal; Hence the KS subspace
model is a special case of general subspace models. Authors
in [13] and [14] show how the multi-dimensional structure in
data can be well exploited for better classification and repre-
sentation performance.

In this work, we present all our analysis for 2-D signals
Y ∈ Rm1×m2 . We study two different ways through which
information can be missing, First, when the entire row and/or
column of the 2-D signal is missing, represented by YΩ. For
instance, while capturing the EEG signals using a number of
electrodes placed over the scalp, one of the electrodes is bro-
ken or we miss to capture the signal for a time window. Sec-
ond, a more general case, when only discrete entries are miss-
ing, that is, the missing entries need not be in the form of en-
tire rows and/or columns, represented by YΩ̂. We formulate a
binary hypothesis test for the more general case of missing in-
formation, where given a KS subspace D ∈ Rm1m2×n1n2 we
need to find whether Y ∈ D by just observing the samples of
Y with or without noise. Here, n1 and n2 are the dimensions
of column and row subspace, respectively.

We formulate the hypothesis test as H0 : Y ∈ D and
H1 : Y /∈ D. This test follows immediately by computing
the residual energy, that is, if Y ∈ D, then the residual en-
ergy

∣∣∣∣Y −UAYUB
∣∣∣∣2
F

= 0 and
∣∣∣∣YΩ −UA

ΩYΩU
B
Ω

∣∣∣∣2
F

=

0, where UA and UB are the orthogonal projection opera-
tor onto row and column subspace, respectively. We show
that the residual energies of the signal are bounded with high
probability. The main result of this work answers, given the
row and column subspaces with dimensions n1 � m1 and
n2 � m2, respectively, how many rows and columns of the 2-
D signal must be observed in order to reliably detect whether
the signal belongs to the given subspace.

The rest of the paper is organized as follows: In Section 2,
we define the KS subspace model. We present the final results
in Section 3 with the discussion and experiments in Section
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4. The hypothesis testing for matched subspace detection is
provided in Section 5 and finally, we conclude this work with
future directions in Section 6. For all the proofs, in this paper,
we refer the reader to [15].

Mathematical Notation: We use lowercase bold letters to
represent vectors, such as x and use uppercase bold to rep-
resent matrices, such as Y. We use ⊗ to represent the Kro-
necker product between two matrices.

2. MODEL DEFINITION

A two dimensional signal of interest Y ∈ Rm1×m2 is repre-
sented by a matrix A ∈ Rm1×n1 , which describes the sub-
space on which the columns of Y approximately lie with
n1 ≤ m1, and by B ∈ Rm2×n2 , which describes the sub-
space on which the rows of Y approximately lie with n2 ≤
m2, that is Y = AXBT where X ∈ Rn1×n2 represents the
coefficient matrix. We can also express Y in vectorized form

y = (A⊗B)x, (1)

where y = vec(Y), x = vec(X) and ⊗ denotes the Kro-
necker product. Similar to [9], we define the coherence of
Kronecker-structured subspace D = A ⊗B as

µ(D) :=
m1m2

n1n2
max
j

∣∣∣∣UDeABj
∣∣∣∣2

2
, (2)

where UD = D
(
DTD

)−1
DT is the orthogonal projection

operator onto D, eABj represents the standard basis vector and
|| · ||2 represents the euclidean norm of a vector. The coher-
ence provides the amount of information we can expect from
each sample to provide. From [5], the coherence can take val-
ues between 1 ≤ µ(D) ≤ m1m2

n1n2
. For further analysis, we

also need to know whether the signal has energy outside the
n1 and n2 dimensional column and row subspaces, respec-
tively. Therefore, we define the coherence of column and row
subspaces as

µ(A) :=
m1

n1
max
j

∣∣∣∣UAeAj
∣∣∣∣2

2
(3)

µ(B) :=
m2

n2
max
j

∣∣∣∣UBeBj
∣∣∣∣2

2
. (4)

Where, UA = A
(
ATA

)−1
AT and UB = B

(
BTB

)−1
BT

are the projection operators onto A and B subspace, re-
spectively and can take values 1 ≤ µ(A) ≤ m1

n1
and

1 ≤ µ(B) ≤ m2

n2
.

µ(A) achieves minimum values when all the vectors
whose all the entries have magnitude 1√

n1
forms A and if

A contains a standard basis element then µ(A) achieves the
maximum value m1

n1
. Similar analysis holds for µ(B) and

µ(D). For a 2-D signal Y, we let µ(Y) define the coherence
of the subspace spanned by the signal Y and we define the
l∞ norm as ||Y||∞ = max

i,j
abs(Y(i, j)). From [5], we write

µ(Y) = m1m2
||Y||2∞
| Y ||2F

.

Missing Signals: For tensor signals, we can expect signal
entries to be missing along one or many dimensions, for in-
stance, in Fig. 1a entire rows and columns of the 2-D signal Y
are missing. We represent the signal with this type of missing
information as YΩ, where Ωk1k2 represents the index of non-
zero rows (k1) and non-zeros columns (k2). Now onwards,
we use shorthand Ω in place of Ωk1k2 throughout the paper.
Thus, YΩ is a signal of dimension k1× k2. The energy of the
signal Y in the subspace A⊗B is

∣∣∣∣UAY(UB)T
∣∣∣∣2
F

, where
UA and UB are the column and row projection operator onto
A and B subspaces, respectively and || · ||F represents the
Frobenius norm of the matrix.

Now, we define the column and row subspace for the
missing signal as AΩ ∈ Rk1×n1 and BΩ ∈ Rk2×n2 . Here,
k1 and k2 are the columns and rows of A and B, respectively
indexed by the set Ωk1k2 , arranged in lexigraphic order. Since
we only observe the signal Y for the set of rows and columns
indexed by Ωk1k2 , we estimate the missing signal energy YΩ

in D as how well the missing signal is best represented by
the subspace DΩ = AΩ ⊗ BΩ with the projection opera-
tor UD

Ω = DΩ

(
DT

ΩDΩ

)−1
DT

Ω. Therefore, if the row and
columns of signal Y lies in row and column subspace then∣∣∣∣Y −UAYUB

∣∣∣∣2
F

= 0 and hence

∣∣∣∣YΩ −UA
ΩYΩU

B
Ω

∣∣∣∣2
F

=
∣∣∣∣∣∣YΩ − ŶΩ

∣∣∣∣∣∣2
F

= 0,

where UA
Ω = AΩ

(
AT

ΩAΩ

)−1
AT

Ω and
UB

Ω = BΩ

(
BT

ΩBΩ

)−1
BT

Ω.
However, it is not always true that the entire row or/and

entire column of the signal is missing. It may be the case that,
while collecting the sensor output, some sensors are dead for a
period of time and then wake up again. Therefore, we extend
our analysis to a more general case of missing information,
that is when any particular entry in the signal is missing as
shown in Fig. 1(b) where only a fraction of entries are miss-
ing. We represent the signal with missing discrete entries as
YΩ̂(k1,k2), where Ω̂(k1, k2) = {(i, j)∀(i, j)|YΩ̂(i,j) 6= 0}
represents the location of all the non-zero entries.

When the entire rows and/or columns of the signal are
missing, we represent the remaining signal as the intersec-
tion of remaining rows and columns. Whereas, when dis-
crete entries are missing, we represent the remaining signal
as the signal minus the intersection of rows and/or columns
that contains missing entries, we call it as union of dimen-
sions. For further clarification, in Fig. 1 we plot a 2-D signal
Y ∈ R20×17 with m1 = 20 and m2 = 17. Let 5 rows and
2 columns of the signal Y is missing, we represent the re-
maining signal as the intersection of k1 = m1 − 5 = 15 and
k2 = m2 − 2 = 15 in Fig. 1a. Similarly, for the missing
discrete entries we count the number of rows and columns to
which the missing entries belongs and subtract the count from
corresponding signal dimensions to obtain k1 and k2. Finally
subtract the intersection of the k1 and k2 from the signal to
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represent the remaining signal as shown in Fig. 1b.

(a) YΩk1k2
(b) YΩ̂(k1,k2)

Fig. 1: (a) Intersection and (b) union of rows and columns.
Here dark colored entries represent the missing entries.

3. MAIN RESULTS

Theorem 1. Let the entire rows or/and columns of the sig-
nal be missing, δ > 0, k1 ≥ 8

3n1µ(A) log
(

2n1

δ

)
and k2 ≥

8
3n2µ(B) log

(
2n2

δ

)
, than with probability at least 1− 8δ,(

(1− α)

(
k1k2

m1m2

)
− (β + 1)2

2(1− γ2)(1− γ1)

( n1

m1
µ(A)

+
n2

m2
µ(B)

))
||Y−UAYUB ||2F ≤ ||YΩ −UA

ΩYΩU
B
Ω ||2F

≤ (1 + α)

(
k1k2

m1m2

) ∣∣∣∣Y −UAYUB
∣∣∣∣2
F
, (5)

where α =
√

2µ(Y)2

k1k2
log( 1

δ ), β =
√

4µ(Y) log( 1
δ )(

m2
n2

1
µ(B)

+
m1
n2

1
µ(A)

) ,

γ1 =
√

8n1µ(A)
3k1

log
(

2n1

δ

)
and γ2 =

√
8n2µ(A)

3k2
log
(

2n2

δ

)
.

Proof. To prove this theorem, we first solve for the residual
energy as follows

||YΩ −UA
ΩYΩU

B
Ω ||2F

= tr
((

YΩ −UA
ΩYΩU

B
Ω

)T (
YΩ −UA

ΩYΩU
B
Ω

))
= ||YΩ||2F − tr

(
YT

ΩU
A
ΩYΩU

B
Ω

)
= ||YΩ||2F −

tr
(
YT

ΩAΩ

(
AT

ΩAΩ

)−1
AT

ΩYΩBΩ

(
BT

ΩBΩ

)−1
BT

Ω

)
. (6)

Now to solve the second part in (6), define TT
ΩTΩ =(

AT
ΩAΩ

)−1
and VΩV

T
Ω =

(
BT

ΩBΩ

)−1
. Using the rota-

tion property of trace we write

tr
(
YT

ΩAΩT
T
ΩTΩA

T
ΩYΩBΩVΩV

T
ΩB

T
Ω

)
=
∣∣∣∣TΩA

T
ΩYΩBΩV

T
Ω

∣∣∣∣2
F
. (7)

Substituting TT
ΩTΩ and VΩV

T
Ω into (6) and using (7) we ob-

tain:

||YΩ −UA
ΩYΩU

B
Ω ||2F

= ||YΩ||2F −
∣∣∣∣TΩA

T
ΩYΩBΩV

T
Ω

∣∣∣∣2
F

≤ ||YΩ||2F − ||TΩ||2F ·
∣∣∣∣AT

ΩYΩBΩ

∣∣∣∣2
F
·
∣∣∣∣VT

Ω

∣∣∣∣2
F
. (8)

The final expression for residual energy is

||YΩ −UA
ΩYΩU

B
Ω ||2F ≤ ||YΩ||2F −

(∣∣∣∣∣∣(AT
ΩAΩ

)−1
∣∣∣∣∣∣2
F

·
∣∣∣∣AT

ΩYΩBΩ

∣∣∣∣ · ∣∣∣∣∣∣(BT
ΩBΩ

)−1
∣∣∣∣∣∣2
F

)
. (9)

We bound the each term in (9) with high probability using the
lemmas in [15] and using the union bound we obtain the final
expression in Theorem 1.

We further extend this analysis to a more general scenario
when discrete data entries are missing, that is, rather than
missing an entire row and/or column, only some of the en-
tries from that row and/or column are missing as in Fig. 1b.

Theorem 2. Let the discrete entries from the signal be
missing, δ > 0, k1 ≥ 8

3n1µ(A) log
(

2n1

δ

)
and k2 ≥

8
3n2µ(B) log

(
2n2

δ

)
, than with probability at least 1− 8δ,

k1m2 + k2m1 − k1k2

m1m2

(
(1−α)− m1m2(β + 1)2

2k1k2(1− γ1)(1− γ2)(
n1

m1
µ(A) +

n2

m2
µ(B)

)) ∣∣∣∣Y −UAYUB
∣∣∣∣2
F
≤∣∣∣∣∣∣YΩ̂ −UA

Ω̂
YΩ̂U

B
Ω̂

∣∣∣∣∣∣2
F

≤ (1 + α)
k1m2 + k2m1 − k1k2

m1m2

∣∣∣∣Y −UAYUB
∣∣∣∣2
F
,

(10)

where α =
√

2µ(Y)2k1k2
(k1m2+k2m1−k1k2)2 log( 1

δ ),

β =
√

4µ(Y) log( 1
δ )(

m1
k1

+
m2
k2
−1
)(

m2
n2

1
µ(B)

+
m1
n2

1
µ(A)

) ,

γ1 =
√

8n1µ(A)
3k1

log
(

2n1

δ

)
and γ2 =

√
8n2µ(A)

3k2
log
(

2n2

δ

)
Proof. The proof of this theorem is presented in [15].

Theorem 1 always provides the tighter bound than Theo-
rem 2. For example, when only one entry from the signal is
missing then from the pre-multiplier of upper bound in both
the theorems we say that k1k2 < k1m2 + k2m1 − k1k2, be-
cause in any case m1 > k1 and m2 > k2. Furthermore, both
the theorems can be very easily extended to tensors having
more than 2 dimensions. For the tensors with more than 2 di-
mensions, the Kronecker subspace is the Kronecker product
of more than two subspaces and rest of the analysis follows
immediately.

4. ANALYSIS AND EXPERIMENTS

For completeness, we carry out analysis on more general re-
sults, that is on Theorem 2, as all the properties which holds
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(a) Y ∈ (A⊗B)⊥ (b) Y ∈ (A⊥ ⊗B)

(c) Y ∈ (A⊗B⊥) (d) Y ∈ (A⊗B)

Fig. 2: The projection residual
∣∣∣∣∣∣YΩ̂ −UA

Ω̂
YΩ̂U

B
Ω̂

∣∣∣∣∣∣2
F

aver-

aged over 1000 simulations for fixed row A ∈ Rk1×10 and
column B ∈ Rk2×10 subspaces, fixed sample size defined by
k1 and k2 but different set of samples Ω̂ drawn without re-
placement and signal dimension Y ∈ R100×100.

for the general case of missing signals are all applicable for
the restricted problem as well. All the parameters α, β, γ1 and
γ2 depend on δ and the lower bound of the Theorem 2 con-
tains all these parameters. In order to get more information
about the lower bound we set all these parameters very near
to 0, therefore for a incoherent row and column subspace, that
is for µ(A) = 1 and µ(B) = 1 we write the lower bound as:

k1m2 + k2m1 − k1k2

m1m2

(
1− n1m2 + n2m1

2k1k2

)
.

For k1 < n1 and k2 < n2, the first term in the above expres-
sion k1m2+k2m1−k1k2

m1m2
> 0. This is because that the actual

signal dimension m1 and m2 is greater than the correspond-
ing row and column subspace dimensions n1 and n2. There-
fore for m1 = m2 = m, n1 = n2 = n and k1 = k2 = k
we write the lower bound as 2k(m−k)

m2

(
1− nm

k2

)
. Here

the second term is always ≤ 0 as nm > k2. There-
fore, for the incoherent row and column subspaces the
lower bound is ≤ 0, which is consistent with the fact that∣∣∣∣YΩ −UA

ΩYΩU
B
Ω

∣∣∣∣2
F

= 0 for k1 < n1 and k2 < n2.
For the experiments, we choose highly incoherent sub-

spaces. Both row and column subspaces have Gaussian
random bases, that is µ(A) ≈ 1.3 and µ(B) ≈ 1.3. In
all these simulations in Fig. 2 we plot the residual energy∣∣∣∣∣∣YΩ̂ −UA

Ω̂
YΩ̂U

B
Ω̂

∣∣∣∣∣∣2
F

as a function of k1·k2. The plots show
the maximum, minimum and mean values of the calculated
residual energy over 1000 simulations of Ω̂ without replace-

ment for fixed row and column subspace, fixed unit norm
signal and Y ∈ (A⊗B)⊥ in Fig. 2a. We find that the resid-
ual energy is always positive when k1 ≥ n1µ(A) log (n1)
and k2 ≥ n2µ(B) log (n2). The threshold in Fig. 2 is calcu-
lated as the product of lower bounds of k1 and k2. In Fig. 2b,
2c we also show that the residual energy is still positive when
the signal is sampled from a Kronecker subspace with any
one of the subspaces is orthogonal. As expected, the residual
energy is 0 for the signal sampled from the Kronecker sub-
space itself, that is for Y ∈ (A⊗B) the residual energy is 0,
as shown in Fig. 2d.

5. MATCHED SUBSPACE DETECTION

We form the detection setup as a binary hypothesis test for
the hypotheses H0 : Y ∈ D and H1 : Y /∈ D. We use the
following test statistics

∣∣∣∣YΩ −UA
ΩYΩU

B
Ω

∣∣∣∣2
F

H0

≶
H1

η. (11)

In the noise less case Y = AXBT we can assume η = 0.
Thus, from Theorem 1 and 2, as long as
k1 ≥ 8

3n1µ(A) log
(

2n1

δ

)
, k2 ≥ 8

3n2µ(B) log
(

2n2

δ

)
and

δ > 0 the probability of detection is greater than 1− 8δ, that
is, P

[∣∣∣∣YΩ −UA
ΩYΩU

B
Ω

∣∣∣∣2
F
> 0
∣∣∣H1

]
≥ 1 − 8δ. Also,

as shown in Fig. 2d, the projection error is zero when
the signal belongs to the Kronecker-structured subspace.
Therefore, the probability of false alarm is also 0, that is,
P
[∣∣∣∣YΩ −UA

ΩYΩU
B
Ω

∣∣∣∣2
F
> 0
∣∣∣H0

]
= 0.

With the noisy signal Ỹ = AXBT + Z, where Z ∼
N (0, I), we use the same hypothesis but the test statistics
changes to ∣∣∣∣∣∣ỸΩ −UA

ΩỸΩU
B
Ω

∣∣∣∣∣∣2
F

H0

≶
H1

η. (12)

Here, we note that according to [7], the test statistic is dis-
tributed as a non-central X 2 with n1n2 degrees of freedom
and the non-centrality parameter

∣∣∣∣YΩ −UA
ΩYΩU

B
Ω

∣∣∣∣2
F

,
where the detection probability
PD = 1 − P

[
X 2
n1n2

(∣∣∣∣YΩ −UA
ΩYΩU

B
Ω

∣∣∣∣2
F

)
≤ η

]
in-

creases monotonically with the non-centrality parameter.
Therefore, this means that the detection probability grows
with either k1 or k2 or both.

6. CONCLUSION

In this paper, we extend the matched subspace detection
for vectorized signals to tensor signals by projecting the
signal onto a Kronecker-structured subspace. We have fur-
ther shown that the detection from a highly incomplete ten-
sor signal is possible by computing the energy outside the
Kronecker-structured subspace.
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