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ABSTRACT 

Tensor decomposition is a promising solution for analyzing 
and classifying multidimensional data streams in long-term 
monitoring of physical systems. However, the key challenge 
is to continuously perform the expensive tensor decomposi-
tion to ensure the effective classification of the time-
evolving data as the system evolves over time. This paper 
explores a novel resource-aware tensor decomposition 
framework using reinforcement learning (RL). The pro-
posed framework is developed to update a tensor decompo-
sition-based classifier only using the data that is important 
to the evolving nature of the system. It learns an RL agent to 
look-ahead and identifies the data that is important to the 
classifier update and performs the tensor decomposition on 
those data streams. The proposed resource-aware framework 
was evaluated using synthetic data and motion data from 
patients with Parkinson’s disease and indicated a significant 
performance in both classification accuracy and number of 
tensor decompositions compared to a continuous update 
approach. 
 
Index Terms— tensor decomposition, reinforcement learn-
ing, time-evolving systems, long-term monitoring 
 

1. INTRODUCTION 

Tensor (i.e., multi-way array) decomposition is a promising 
solution for data-driven analysis of multiset fused data as 
needed for monitoring of physical systems in a wide range 
of applications, e.g., environmental, infrastructure, transpor-
tation, and health monitoring [1]. Tensor decomposition 
provides a supervised and unsupervised feature extraction 
and classification tool that captures multi-linear and multi-
aspect structures in large-scale and multidimension-
al/multiset datasets [2]. Despite the fundamental discoveries 
in the tensor decomposition field, there are limitations that 
restrict their application in long-term monitoring of physical 
systems. Hence, tensor decomposition-based classifiers have 
been mainly applied for detecting patterns in static datasets 
and their full potential for evolving data streams of nonsta-
tionary, evolving physical systems has yet to be realized  
[3]. Iterative tensor decompositions have been studied [4, 5], 
but previous studies focus on minimizing the cost of classi-
fier update for every incoming data and are still based on 
continuous updates.  
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In this paper, we investigate the possibility of develop-

ing a resource-aware approach that, instead of continuous 
updates of a classifier, intelligently updates a tensor decom-
position-based classifier according to the importance of data 
to the classifier’s performance. The development of such 
resource-aware tensor updates is extremely important as it 
significantly advances the analysis of time-evolving data 
streams and could extend the application of powerful tensor 
decomposition-based classifications to long-term monitoring 
of physical systems. 
  

2. MATERIALS AND METHODS 

2.1. Tensor Decomposition-based Classifiers  
The data stream of 𝐾 sensors with 𝑃 channels 𝑥$ ∈ 

ℝ'×) for 𝑇 = 1,… , 𝑛, 𝑛 + 1, … is represented by a 3-way 
tensor 𝐗'×2×) with time dimension 𝑁 growing as more data 
is received (see Figure 1). Tensor decompositions have 
been extremely helpful in the classification cases that pre-
known, hand-crafted-features are unavailable [10]. They 
decompose the tensor data into the representing basis vec-
tors, in different data domains, which indicate a set of opti-
mal, data-driven features to represent the data in a classifier 
𝑙 = 𝜓$(𝐗) to predict the category labels 𝑙 from data 𝐗. 
There are several tensor decomposition models [6, 7]. One 
well-known approach is parallel factor analysis 
(PARAFAC) [8], which decomposes a tensor 𝐗'×2×) to 𝑀 
rank-1 bases according to the following equation: 

𝐗 = 𝑏: ⊚ 𝑐: ⊚ 𝑑:

>

:?@

 (1) 

where ⊚ denotes the outer product, and the vectors 𝑏: ∈
ℝ'×@, 𝑐: ∈ ℝ2×@, 𝑑: ∈ ℝ)×@	are the decomposed rank-1 
basis vectors and represent the columns of the basis matrices 
𝐁	,	𝐂	, 𝐃, respectively. The decomposed basis vectors 
(𝑏:, 𝑑:) indicate the data-driven features in the classifier 
𝜓$. The bases are estimated based on a least square cost 
function in Eq. 2, which is solved using stochastic gradient 
approaches [9]. For simplicity, the notation of 𝐁, 𝐂, 𝐃	  is 
used instead of Eq. 1. 

𝑓 𝐁, 𝐂, 𝐃 =
1
2
𝐗 − 𝐁, 𝐂, 𝐃	

Ϝ
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Figure 1. Tensor decomposition based on parallel factor analysis. 
The 3-way tensor 𝐗'×2×) is decomposed to 𝑀 rank-1 basis vec-
tors 𝑏: ∈ ℝ'×@, 𝑐: ∈ ℝ2×@, 𝑑: ∈ ℝ)×@. 
 
2.2. Reinforcement Learning  
Reinforcement learning (RL) is a biologically inspired ma-
chine learning technique [11] where an RL agent interacts 
with a dynamic and incompletely known environment over 
time and learns to take optimal actions so as to control the 
environment (see Figure 2). At every step 𝑇, an agent ob-
serves the environment’s current state 𝑠$, takes an ac-
tion	𝑎$	from the set of possible actions according to its poli-
cy, 𝜋M(𝑎$|𝑠$), receives a reward 𝑟$	from the environment, 
and then transitions to a state 𝑠$P@. This process continues 
until the agent reaches a terminal state or continues forever 
in the case of non-episodic problems. The goal of the agent 
is to maximize the expectation of the long-term accumulated 
reward, 𝑅$ = 	 𝜆T𝑟$PTU

T?V  , where 𝜏 refers to future rewards 
and 𝜆 ∈ 0,1  is a discount factor to tradeoffs between the 
immediate and future rewards. Although RL proved to be 
successful for controlling human-built systems [12], its abil-
ity to learn from real-physical systems is yet to be explored. 
This is because the core assumption of RL that the agent’s 
actions must influence the environment’s current state do 
not necessarily hold when modeling real-world problems.   

 
Figure 2. Interactions between reinforcement learning agent and 
unknown, dynamic environment. At every step 𝑇, the RL agent 
observes the environment’s current state 𝑠$, takes an action	𝑎$	ac-
cording to its policy, 𝜋M(𝑎$|𝑠$), receives a reward 𝑟$	from the 
environment, and then transitions to a state 𝑠$P@. 
 
2.3. Novel Resource-aware Tensor Decomposition 
The developed method is inspired by the ability of tensor 
decomposition to derive data-driven classifiers 𝜓$from mul-
tiset fused data and RL to think ahead and predict optimized 
actions 𝑎$ that control an environment toward a desired 
state (Figure 3). Hence, adapting RL modeling should be 
highly promising for learning the optimal action policy 
𝜋M(𝑎$|𝑠$) for when to update the classifier 𝜓$ => 𝜓$P@. 
Based on the integration of tensor decomposition and RL, a 
resource-constraint update for tensor decomposition is pro-  

Figure 3. The developed resource-aware tensor decomposition 
design based on reinforcement learning. 

posed in such a way that a classifier update will happen only 
at predicted times. Specifically, the resource-constraint up-
date predicts when 𝐗$P@ is important to the system evolu-
tion and provides appropriate action 𝑎$P@ ∈ 0,1 , where 
𝑎$P@ = 1 indicates a classifier update is recommended. In 
long-term monitoring of evolutionary systems, 
{… , 𝑎$, 𝑎$P@} will be very sparse resulting in a significant 
reduction in the computation cost of by reducing the number 
of time that a tensor decomposition needs to be performed 
for a tensor decomposition-based classifier. 

To predict action 𝑎$P@, a dynamic environment consist-
ing of both sensors and a classifier is defined (Figure 3). An 
RL agent is designed to control this environment according 
to policy 𝜋M(𝑎$|𝑠$). In this design, the data 𝐗$ and classifi-
er performance 𝜓$(𝐗$) provide the environment’s observa-
bles 𝑠$. The changes in the classifier performance and re-
source usage (i.e., 𝑎$ being 1 or 0) define reward 𝑟$ to an 
update. This design satisfies the requirement that an RL 
agent’s action 𝑎$ ∈ {0,1} (when to update) must influence 
the subsequent observation (i.e., classifier performance). 
The observation 𝑠$ is defined as follows. 

𝑠$ = [𝜓$]$̂ :$	𝑔(	𝐗$)]  (3) 

where 𝜓$]$̂ :$ indicates the classifier’s performance over a 
window of 𝑇V + 1 and function 𝑔 𝐗$ = 𝒆$ −
𝜇 c𝚺]@ 𝒆$ − 𝜇  calculates the likelihood of change of the 
incoming data stream  𝐗$ with respect to the last 𝑇V re-
ceived data. In this formulation, 𝒆$ ∈ ℝ@	×	$̂  is the probabil-
ity of the last 𝑇V incoming data previous to 𝐗$ belonging to 
the data pdf 𝑃$(𝐗), which is obtained from the raw data 
stream. Parameters 𝝁 and 𝚺 of a Normal distribution 
𝒩(𝝁, 𝚺) are estimated using Maximum Likelihood Estima-
tion on the vector series [𝒆$]gP@, … , 𝒆$]. 

The reward function is defined as in Eq. 4 such that 
ℎ(𝑎$) penalizes the RL agent for an update and 𝑓(𝜓$̂ :$P@) 
is defined to reward the agent when the action improves the 
performance and penalizes it otherwise. 

𝑟$ = 𝜓$P@ − 𝜇j − 𝛼l𝑎$  (4) 
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where 0 ≤ 𝛼l ≤ 1 represents the update-cost weight, 𝑎$ ∈
{0,1} is the associated action to whether to update the classi-
fier or not, and  𝜇j is the average performance over 
𝜓$]$̂ :$P@.  

The details of the method to train the described RL agent 
are outlined in Algorithm 1. The algorithm, first, trains an 
initial classifier 𝜓V by applying PARAFAC on the initial 
data, and then an RL agent is trained by applying and updat-
ing 𝜓V over the evolving data. For every action of the RL 
agent, the algorithm updates the RL policy 𝜋M(𝑎$|𝑠$) ac-
cording to the environment’s observable 𝑠$P@ and the re-
ceived reward 𝑟$P@. Given that we defined the environment 
such that it rewards the RL agent if the selected action in-
creases the classifier performance and minimizes the num-
ber of updates, it is expected that the trained RL agent learns 
to predict the data that is important to the system evolution 
and update the classifier. Step 8 is important as it defines 
which RL algorithm will be used to learn the described RL 
agent. In this work, we will use REINFORCE algorithm 
[12] which is a policy gradient method that directly optimiz-
es the policy 𝜋M(𝑎$|𝑠$). We use Recurrent Neural Network 
(RNN) as a linear combination of observations and actions.  
________________________________________________ 
Algorithm 1 Train RL Agent for Resource-aware Tensor Decom-
position 
Input: Training data {𝐗@, …, 𝐗n, …, 𝐗o} ∈ ℝ'×2 n ×),	𝑇V per-
formance window size, 𝛼l update-cost weight, 𝜆 discount factor, 
RL policy 𝜋M(𝑎$|𝑠$) (RNN with # of hidden layers and # of recur-
rent neurons), episode duration 

1. Initialize the weights of RL RNN with random values. 
2. repeat {𝐗n} 
3. Train an initial classifier 𝜓V by applying PARAFAC on the 

initial data: 𝐗$ (𝑇V length of 𝐗n). 
4. Pick an action 𝑎@ and a state 𝑠@ 
5. repeat {Initialize 𝑇=𝑇V} 
6. repeat {For each episode} 
7. Follow action 𝑎$, update classifier 𝜓$ => 𝜓$P@, observe 

state 𝑠$P@ (Eq. 3), and receive reward 𝑟$P@ (Eq. 4). 
8. If 𝑠$P@ is terminal: Update RNN weights and go to next ep-

isode 
9. until  the end of episode 
10. Pick an action 𝑎$P@ according to the RL policy 

𝜋M(𝑎$P@|𝑠$P@). 
11. Increment 𝑇 
12. until  𝑇 is equal to 𝑁 𝑞  
13. for  𝑞 = 1,… , 𝑄 

Output: RNN weights for RL policy 𝜋M(𝑎$|𝑠$) 

 
The parameter selection is application dependent and 

has to be tuned empirically. The parameters 𝜆, 𝑇V, and 𝛼l 
are critical to ensure the stability and efficiency of the re-
ward function. The literature suggests that a fixed 𝜆 near 0.9 
usually provides a reasonable prediction [13]. The value of 
𝑇V	has to be large enough to preserve memory of the long-
term dynamics, but small enough to limit the effect of older 
behavior on the reward function by emphasizing the most 

recent changes. The selection of 𝛼l provides a trade-off 
between classification performance and update cost. Devel-
oping a resource-aware tensor decomposition would extend 
the potential of tensor decomposition beyond static systems 
and enable non-stationary analysis of multiset fused data 
that is needed for monitoring of evolving systems. 

 
3. RESULTS 

3.1. Experimental Setup 
Synthetic data: A synthetic case with a data structure of 
𝐾 = 10 and 𝑃 = 3 at every time point was generated where 
the basis matrices were drawn from a normal distribution 
(𝜇 = 0, 𝜎 = 0.1). A series of evolutionary effect was simu-
lated by changing the mean from 0 to 0.35 with steps of 
0.01. The duration of each data was selected from a uniform 
distribution (2,10) minutes with a sampling frequency of 10 
Hz. SimTensor [14] was used for simulating the standard 
normal tensors that were later manipulated in MATLAB to 
generate the dataset. With this setup, for every initial data, 
on average, there is 250 minutes of long-term evolutionary 
data. We investigated whether the developed resource-aware 
tensor decomposition design can be trained to predict the 
data that is important to the evolving nature of the synthetic 
dataset. 
Parkinson’s Disease Patient Data: (PD) is one of the most 
common chronic progressive neurological disorders, affect-
ing over half a million Americans annually and resulting in 
over $20 billion costs each year [15]. Levodopa is the most 
common medication used to improve motor impairments in 
subjects with PD. Unfortunately, prolonged treatment with 
Levodopa causes troubling motor fluctuations [16] occur-
ring in 50% of patients within 3 to 5 years of diagnosis and 
80% of patients after 10 years [17]. These complications 
result in frequent fluctuations of response to treatment inter-
vention between “ON” state with maximum benefit from 
Levodopa and “OFF” state with least benefit from Levodo-
pa, and are a major focus of PD management [18]. In this 
paper, we investigated whether the developed resource-
aware tensor decomposition design can be used to train a 
classifier that accurately detects PD patients’ medication 
ON/OFF states from motion data for the purpose of PD pa-
tient monitoring.  

For this purpose, an initial classifier (based on subjects 
S1 to S5) was designed and adapted to a new test subject S6. 
A KinetiSense motion sensor unit with a triaxial accelerom-
eter and triaxial gyroscope with 128 Hz sampling rate was 
used to record motion data from the most affected wrist and 
ankle while the patients were in their ON and OFF medica-
tion states and performed a variety of daily living activities 
(e.g., resting, walking, drinking, dressing, hair brushing, 
unpacking groceries, and cutting food) [19]. It provided a 
PD dataset with six PD subjects (age: 65±7 years) and a 
total OFF time of 90.32±21.78 mins and ON time of 
27.53±10.49 mins with 𝐾 = 4 sensors and 𝑃 = 3 (x,y,z) 
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axes. The study was approved by the institutional review 
board, and all patients provided written informed consent.  

 
3.2. Classification of Evolutionary Synthetic Data 
To examine the performance of resource-aware tensor de-
composition framework, an RL agent was learned using all 
the simulated data, except one. The observation and reward 
were calculated using 𝑇V=10 samples and an update cost 
factor of 0 ≤ 𝛼l ≤ 1 and 𝜆 = 0.9. The action policy was 
modeled using a RNN architecture with one hidden layer 
consisting of 25 recurrent neurons. The output layer consist-
ed of one sigmoid functions to produce the probability of 
actions between 0 to 1 corresponding to 𝑎$. NN learning 
rate of 10]v was used to update the policy network after 
every one second. We ran an episodic RL with maximum 
180 epochs (30 mins of data). To test the performance of the 
learned RL agent, the update policy was used on the remain-
ing data to control the non-uniform classifier updates. The 
average performance and total number of updates for 0 ≤
𝛼l ≤ 1 are illustrated in Figure 4. The results are shown for 
the continuous update and the designed resource-aware 
framework. For comparison purposes, the total number of 
updates and performance were normalized to the corre-
sponding values from the continuous-update results. As 
shown in this figure, the resource-aware tensor decomposi-
tion design was able to significantly reduce the number of 
the performed classifier updates (i.e., tensor decomposi-
tions). Moreover, for 0.2 ≤ 𝛼l ≤ 0.6, the performance of 
the resource-aware framework is comparable to the continu-
ous update, while the number of updates is much less. 
 

 
Figure 4. Employing the resource-aware tensor decomposition 
design significantly reduced the update costs (the plot on the left 
hand side) for 0.2 ≤ 𝛼l ≤ 0.6 with considerably high performance 
(the plot on the left hand side). The total number of updates and 
performance were normalized to the corresponding values from the 
continuous-update results (the dashed line). 

3.3 Medication ON/OFF Classification in PD Patients 
It was investigated if the resource-aware design of tensor 
decomposition was able to provide an evolutionary medica-
tion ON/OFF classifier for monitoring of PD patients. Train-
ing the and RL agent was performed as described in Section 
3.2 𝛼l = 0.4. This process repeated for S1 to S5 in a leave-
one-out manner. The learned RL policy was used to adapt 
an initial classifier (based on S1-S5) to the test subject S6 
and the result was reported in Figure 5. For comparison 
purposes, a static, generalized classifier (train on S1-S5 and 

test on S6) was also implemented. In this assessment, the 
ON/OFF ground truth was provided by a physician. As 
shown in this figure, the resource-aware design adapted a 
classifier to a new subject better than the static classifier. 
Another interesting observation concerns the number of 
updates over time. Interestingly, as the classifier evolved, 
fewer classifier updates were activated, with less updates 
using the more expensive sensor. 

 
Figure 5. The resource-aware tensor decomposition for evolution-
ary classification of medication ON/OFF (blue red) was compared 
to a static leave-one-out classification approach (black line). The 
analysis showed that the resource-aware tensor decomposition 
design was able to adapt to the subject’s dynamics as indicated by 
the increase in the performance and decrease in the number of 
updates.  
 

4. CONCLUSION 

In this paper, a novel resource-aware tensor decomposition 
framework based on reinforcement learning was developed 
to enable evolutionary analysis of multiset data from a sys-
tem as it evolves over time. The application of the proposed 
algorithm on a synthetic dataset and a Parkinson’s disease 
dataset demonstrated its effectiveness for a better analysis of 
the characteristics that comprise an evolving system in terms 
of both performance (i.e., accuracy) and efficiency (i.e., 
number of classifier updates). This framework can be modi-
fied to improve the effectiveness by appropriate selection of  
model parameters using analytical calculations and numeri-
cal simulations. Formulating the performance of the non-
uniform updates using the resource-aware framework will 
facilitate efficient selection of the parameters. Furthermore, 
since this algorithm offers reduced number of classifier up-
dates, its implications would extend beyond reduced compu-
tation costs for applications when there are other costs asso-
ciated with each update, such as transmission cost between 
sensor and the cloud. 
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