
A NOVEL RESOURCE-AWARE TENSOR DECOMPOSITION DESIGN BASED ON
REINFORCEMENT LEARNING

Behnaz Ghoraani*
Department of Computer and Electrical Engineering and Computer Science

Florida Atlantic University

ABSTRACT

Tensor decomposition is a promising solution for analyzing
and classifying multidimensional data streams in long-term
monitoring of physical systems. However, the key challenge
is to continuously perform the expensive tensor decomposi-
tion to ensure the effective classification of the time-
evolving data as the system evolves over time. This paper
explores a novel resource-aware tensor decomposition
framework using reinforcement learning (RL). The pro-
posed framework is developed to update a tensor decompo-
sition-based classifier only using the data that is important
to the evolving nature of the system. It learns an RL agent to
look-ahead and identifies the data that is important to the
classifier update and performs the tensor decomposition on
those data streams. The proposed resource-aware framework
was evaluated using synthetic data and motion data from
patients with Parkinson’s disease and indicated a significant
performance in both classification accuracy and number of
tensor decompositions compared to a continuous update
approach.

Index Terms— tensor decomposition, reinforcement learn-
ing, time-evolving systems, long-term monitoring

1. INTRODUCTION

Tensor (i.e., multi-way array) decomposition is a promising
solution for data-driven analysis of multiset fused data as
needed for monitoring of physical systems in a wide range
of applications, e.g., environmental, infrastructure, transpor-
tation, and health monitoring [1]. Tensor decomposition
provides a supervised and unsupervised feature extraction
and classification tool that captures multi-linear and multi-
aspect structures in large-scale and multidimension-
al/multiset datasets [2]. Despite the fundamental discoveries
in the tensor decomposition field, there are limitations that
restrict their application in long-term monitoring of physical
systems. Hence, tensor decomposition-based classifiers have
been mainly applied for detecting patterns in static datasets
and their full potential for evolving data streams of nonsta-
tionary, evolving physical systems has yet to be realized
[3]. Iterative tensor decompositions have been studied [4, 5],
but previous studies focus on minimizing the cost of classi-
fier update for every incoming data and are still based on
continuous updates.

* Corresponding author. Email: bghoraani@ieee.org

In this paper, we investigate the possibility of develop-

ing a resource-aware approach that, instead of continuous
updates of a classifier, intelligently updates a tensor decom-
position-based classifier according to the importance of data
to the classifier’s performance. The development of such
resource-aware tensor updates is extremely important as it
significantly advances the analysis of time-evolving data
streams and could extend the application of powerful tensor
decomposition-based classifications to long-term monitoring
of physical systems.

2. MATERIALS AND METHODS

2.1. Tensor Decomposition-based Classifiers
The data stream of 𝐾 sensors with 𝑃 channels 𝑥$ ∈

ℝ'×) for 𝑇 = 1,… , 𝑛, 𝑛 + 1, … is represented by a 3-way
tensor 𝐗'×2×) with time dimension 𝑁 growing as more data
is received (see Figure 1). Tensor decompositions have
been extremely helpful in the classification cases that pre-
known, hand-crafted-features are unavailable [10]. They
decompose the tensor data into the representing basis vec-
tors, in different data domains, which indicate a set of opti-
mal, data-driven features to represent the data in a classifier
𝑙 = 𝜓$(𝐗) to predict the category labels 𝑙 from data 𝐗.
There are several tensor decomposition models [6, 7]. One
well-known approach is parallel factor analysis
(PARAFAC) [8], which decomposes a tensor 𝐗'×2×) to 𝑀
rank-1 bases according to the following equation:

𝐗 = 𝑏: ⊚ 𝑐: ⊚ 𝑑:

>

:?@

 (1)

where ⊚ denotes the outer product, and the vectors 𝑏: ∈
ℝ'×@, 𝑐: ∈ ℝ2×@, 𝑑: ∈ ℝ)×@	are the decomposed rank-1
basis vectors and represent the columns of the basis matrices
𝐁	,	𝐂	, 𝐃, respectively. The decomposed basis vectors
(𝑏:, 𝑑:) indicate the data-driven features in the classifier
𝜓$. The bases are estimated based on a least square cost
function in Eq. 2, which is solved using stochastic gradient
approaches [9]. For simplicity, the notation of 𝐁, 𝐂, 𝐃	 is
used instead of Eq. 1.

𝑓 𝐁, 𝐂, 𝐃 =
1
2
𝐗 − 𝐁, 𝐂, 𝐃	

Ϝ
I
 (2)

3447978-1-5386-4658-8/18/$31.00 ©2019 IEEE ICASSP 2019

Figure 1. Tensor decomposition based on parallel factor analysis.
The 3-way tensor 𝐗'×2×) is decomposed to 𝑀 rank-1 basis vec-
tors 𝑏: ∈ ℝ'×@, 𝑐: ∈ ℝ2×@, 𝑑: ∈ ℝ)×@.

2.2. Reinforcement Learning
Reinforcement learning (RL) is a biologically inspired ma-
chine learning technique [11] where an RL agent interacts
with a dynamic and incompletely known environment over
time and learns to take optimal actions so as to control the
environment (see Figure 2). At every step 𝑇, an agent ob-
serves the environment’s current state 𝑠$, takes an ac-
tion	𝑎$	from the set of possible actions according to its poli-
cy, 𝜋M(𝑎$|𝑠$), receives a reward 𝑟$	from the environment,
and then transitions to a state 𝑠$P@. This process continues
until the agent reaches a terminal state or continues forever
in the case of non-episodic problems. The goal of the agent
is to maximize the expectation of the long-term accumulated
reward, 𝑅$ = 	 𝜆T𝑟$PTU

T?V , where 𝜏 refers to future rewards
and 𝜆 ∈ 0,1 is a discount factor to tradeoffs between the
immediate and future rewards. Although RL proved to be
successful for controlling human-built systems [12], its abil-
ity to learn from real-physical systems is yet to be explored.
This is because the core assumption of RL that the agent’s
actions must influence the environment’s current state do
not necessarily hold when modeling real-world problems.

Figure 2. Interactions between reinforcement learning agent and
unknown, dynamic environment. At every step 𝑇, the RL agent
observes the environment’s current state 𝑠$, takes an action	𝑎$	ac-
cording to its policy, 𝜋M(𝑎$|𝑠$), receives a reward 𝑟$	from the
environment, and then transitions to a state 𝑠$P@.

2.3. Novel Resource-aware Tensor Decomposition
The developed method is inspired by the ability of tensor
decomposition to derive data-driven classifiers 𝜓$from mul-
tiset fused data and RL to think ahead and predict optimized
actions 𝑎$ that control an environment toward a desired
state (Figure 3). Hence, adapting RL modeling should be
highly promising for learning the optimal action policy
𝜋M(𝑎$|𝑠$) for when to update the classifier 𝜓$ => 𝜓$P@.
Based on the integration of tensor decomposition and RL, a
resource-constraint update for tensor decomposition is pro-

Figure 3. The developed resource-aware tensor decomposition
design based on reinforcement learning.

posed in such a way that a classifier update will happen only
at predicted times. Specifically, the resource-constraint up-
date predicts when 𝐗$P@ is important to the system evolu-
tion and provides appropriate action 𝑎$P@ ∈ 0,1 , where
𝑎$P@ = 1 indicates a classifier update is recommended. In
long-term monitoring of evolutionary systems,
{… , 𝑎$, 𝑎$P@} will be very sparse resulting in a significant
reduction in the computation cost of by reducing the number
of time that a tensor decomposition needs to be performed
for a tensor decomposition-based classifier.

To predict action 𝑎$P@, a dynamic environment consist-
ing of both sensors and a classifier is defined (Figure 3). An
RL agent is designed to control this environment according
to policy 𝜋M(𝑎$|𝑠$). In this design, the data 𝐗$ and classifi-
er performance 𝜓$(𝐗$) provide the environment’s observa-
bles 𝑠$. The changes in the classifier performance and re-
source usage (i.e., 𝑎$ being 1 or 0) define reward 𝑟$ to an
update. This design satisfies the requirement that an RL
agent’s action 𝑎$ ∈ {0,1} (when to update) must influence
the subsequent observation (i.e., classifier performance).
The observation 𝑠$ is defined as follows.

𝑠$ = [𝜓$]$̂ :$	𝑔(𝐗$)] (3)

where 𝜓$]$̂ :$ indicates the classifier’s performance over a
window of 𝑇V + 1 and function 𝑔 𝐗$ = 𝒆$ −
𝜇 c𝚺]@ 𝒆$ − 𝜇 calculates the likelihood of change of the
incoming data stream 𝐗$ with respect to the last 𝑇V re-
ceived data. In this formulation, 𝒆$ ∈ ℝ@	×	$̂ is the probabil-
ity of the last 𝑇V incoming data previous to 𝐗$ belonging to
the data pdf 𝑃$(𝐗), which is obtained from the raw data
stream. Parameters 𝝁 and 𝚺 of a Normal distribution
𝒩(𝝁, 𝚺) are estimated using Maximum Likelihood Estima-
tion on the vector series [𝒆$]gP@, … , 𝒆$].

The reward function is defined as in Eq. 4 such that
ℎ(𝑎$) penalizes the RL agent for an update and 𝑓(𝜓$̂ :$P@)
is defined to reward the agent when the action improves the
performance and penalizes it otherwise.

𝑟$ = 𝜓$P@ − 𝜇j − 𝛼l𝑎$ (4)

3448

where 0 ≤ 𝛼l ≤ 1 represents the update-cost weight, 𝑎$ ∈
{0,1} is the associated action to whether to update the classi-
fier or not, and 𝜇j is the average performance over
𝜓$]$̂ :$P@.

The details of the method to train the described RL agent
are outlined in Algorithm 1. The algorithm, first, trains an
initial classifier 𝜓V by applying PARAFAC on the initial
data, and then an RL agent is trained by applying and updat-
ing 𝜓V over the evolving data. For every action of the RL
agent, the algorithm updates the RL policy 𝜋M(𝑎$|𝑠$) ac-
cording to the environment’s observable 𝑠$P@ and the re-
ceived reward 𝑟$P@. Given that we defined the environment
such that it rewards the RL agent if the selected action in-
creases the classifier performance and minimizes the num-
ber of updates, it is expected that the trained RL agent learns
to predict the data that is important to the system evolution
and update the classifier. Step 8 is important as it defines
which RL algorithm will be used to learn the described RL
agent. In this work, we will use REINFORCE algorithm
[12] which is a policy gradient method that directly optimiz-
es the policy 𝜋M(𝑎$|𝑠$). We use Recurrent Neural Network
(RNN) as a linear combination of observations and actions.
__
Algorithm 1 Train RL Agent for Resource-aware Tensor Decom-
position
Input: Training data {𝐗@, …, 𝐗n, …, 𝐗o} ∈ ℝ'×2 n ×),	𝑇V per-
formance window size, 𝛼l update-cost weight, 𝜆 discount factor,
RL policy 𝜋M(𝑎$|𝑠$) (RNN with # of hidden layers and # of recur-
rent neurons), episode duration

1. Initialize the weights of RL RNN with random values.
2. repeat {𝐗n}
3. Train an initial classifier 𝜓V by applying PARAFAC on the

initial data: 𝐗$ (𝑇V length of 𝐗n).
4. Pick an action 𝑎@ and a state 𝑠@
5. repeat {Initialize 𝑇=𝑇V}
6. repeat {For each episode}
7. Follow action 𝑎$, update classifier 𝜓$ => 𝜓$P@, observe

state 𝑠$P@ (Eq. 3), and receive reward 𝑟$P@ (Eq. 4).
8. If 𝑠$P@ is terminal: Update RNN weights and go to next ep-

isode
9. until the end of episode
10. Pick an action 𝑎$P@ according to the RL policy

𝜋M(𝑎$P@|𝑠$P@).
11. Increment 𝑇
12. until 𝑇 is equal to 𝑁 𝑞
13. for 𝑞 = 1,… , 𝑄

Output: RNN weights for RL policy 𝜋M(𝑎$|𝑠$)

The parameter selection is application dependent and

has to be tuned empirically. The parameters 𝜆, 𝑇V, and 𝛼l
are critical to ensure the stability and efficiency of the re-
ward function. The literature suggests that a fixed 𝜆 near 0.9
usually provides a reasonable prediction [13]. The value of
𝑇V	has to be large enough to preserve memory of the long-
term dynamics, but small enough to limit the effect of older
behavior on the reward function by emphasizing the most

recent changes. The selection of 𝛼l provides a trade-off
between classification performance and update cost. Devel-
oping a resource-aware tensor decomposition would extend
the potential of tensor decomposition beyond static systems
and enable non-stationary analysis of multiset fused data
that is needed for monitoring of evolving systems.

3. RESULTS

3.1. Experimental Setup
Synthetic data: A synthetic case with a data structure of
𝐾 = 10 and 𝑃 = 3 at every time point was generated where
the basis matrices were drawn from a normal distribution
(𝜇 = 0, 𝜎 = 0.1). A series of evolutionary effect was simu-
lated by changing the mean from 0 to 0.35 with steps of
0.01. The duration of each data was selected from a uniform
distribution (2,10) minutes with a sampling frequency of 10
Hz. SimTensor [14] was used for simulating the standard
normal tensors that were later manipulated in MATLAB to
generate the dataset. With this setup, for every initial data,
on average, there is 250 minutes of long-term evolutionary
data. We investigated whether the developed resource-aware
tensor decomposition design can be trained to predict the
data that is important to the evolving nature of the synthetic
dataset.
Parkinson’s Disease Patient Data: (PD) is one of the most
common chronic progressive neurological disorders, affect-
ing over half a million Americans annually and resulting in
over $20 billion costs each year [15]. Levodopa is the most
common medication used to improve motor impairments in
subjects with PD. Unfortunately, prolonged treatment with
Levodopa causes troubling motor fluctuations [16] occur-
ring in 50% of patients within 3 to 5 years of diagnosis and
80% of patients after 10 years [17]. These complications
result in frequent fluctuations of response to treatment inter-
vention between “ON” state with maximum benefit from
Levodopa and “OFF” state with least benefit from Levodo-
pa, and are a major focus of PD management [18]. In this
paper, we investigated whether the developed resource-
aware tensor decomposition design can be used to train a
classifier that accurately detects PD patients’ medication
ON/OFF states from motion data for the purpose of PD pa-
tient monitoring.

For this purpose, an initial classifier (based on subjects
S1 to S5) was designed and adapted to a new test subject S6.
A KinetiSense motion sensor unit with a triaxial accelerom-
eter and triaxial gyroscope with 128 Hz sampling rate was
used to record motion data from the most affected wrist and
ankle while the patients were in their ON and OFF medica-
tion states and performed a variety of daily living activities
(e.g., resting, walking, drinking, dressing, hair brushing,
unpacking groceries, and cutting food) [19]. It provided a
PD dataset with six PD subjects (age: 65±7 years) and a
total OFF time of 90.32±21.78 mins and ON time of
27.53±10.49 mins with 𝐾 = 4 sensors and 𝑃 = 3 (x,y,z)

3449

axes. The study was approved by the institutional review
board, and all patients provided written informed consent.

3.2. Classification of Evolutionary Synthetic Data
To examine the performance of resource-aware tensor de-
composition framework, an RL agent was learned using all
the simulated data, except one. The observation and reward
were calculated using 𝑇V=10 samples and an update cost
factor of 0 ≤ 𝛼l ≤ 1 and 𝜆 = 0.9. The action policy was
modeled using a RNN architecture with one hidden layer
consisting of 25 recurrent neurons. The output layer consist-
ed of one sigmoid functions to produce the probability of
actions between 0 to 1 corresponding to 𝑎$. NN learning
rate of 10]v was used to update the policy network after
every one second. We ran an episodic RL with maximum
180 epochs (30 mins of data). To test the performance of the
learned RL agent, the update policy was used on the remain-
ing data to control the non-uniform classifier updates. The
average performance and total number of updates for 0 ≤
𝛼l ≤ 1 are illustrated in Figure 4. The results are shown for
the continuous update and the designed resource-aware
framework. For comparison purposes, the total number of
updates and performance were normalized to the corre-
sponding values from the continuous-update results. As
shown in this figure, the resource-aware tensor decomposi-
tion design was able to significantly reduce the number of
the performed classifier updates (i.e., tensor decomposi-
tions). Moreover, for 0.2 ≤ 𝛼l ≤ 0.6, the performance of
the resource-aware framework is comparable to the continu-
ous update, while the number of updates is much less.

Figure 4. Employing the resource-aware tensor decomposition
design significantly reduced the update costs (the plot on the left
hand side) for 0.2 ≤ 𝛼l ≤ 0.6 with considerably high performance
(the plot on the left hand side). The total number of updates and
performance were normalized to the corresponding values from the
continuous-update results (the dashed line).

3.3 Medication ON/OFF Classification in PD Patients
It was investigated if the resource-aware design of tensor
decomposition was able to provide an evolutionary medica-
tion ON/OFF classifier for monitoring of PD patients. Train-
ing the and RL agent was performed as described in Section
3.2 𝛼l = 0.4. This process repeated for S1 to S5 in a leave-
one-out manner. The learned RL policy was used to adapt
an initial classifier (based on S1-S5) to the test subject S6
and the result was reported in Figure 5. For comparison
purposes, a static, generalized classifier (train on S1-S5 and

test on S6) was also implemented. In this assessment, the
ON/OFF ground truth was provided by a physician. As
shown in this figure, the resource-aware design adapted a
classifier to a new subject better than the static classifier.
Another interesting observation concerns the number of
updates over time. Interestingly, as the classifier evolved,
fewer classifier updates were activated, with less updates
using the more expensive sensor.

Figure 5. The resource-aware tensor decomposition for evolution-
ary classification of medication ON/OFF (blue red) was compared
to a static leave-one-out classification approach (black line). The
analysis showed that the resource-aware tensor decomposition
design was able to adapt to the subject’s dynamics as indicated by
the increase in the performance and decrease in the number of
updates.

4. CONCLUSION

In this paper, a novel resource-aware tensor decomposition
framework based on reinforcement learning was developed
to enable evolutionary analysis of multiset data from a sys-
tem as it evolves over time. The application of the proposed
algorithm on a synthetic dataset and a Parkinson’s disease
dataset demonstrated its effectiveness for a better analysis of
the characteristics that comprise an evolving system in terms
of both performance (i.e., accuracy) and efficiency (i.e.,
number of classifier updates). This framework can be modi-
fied to improve the effectiveness by appropriate selection of
model parameters using analytical calculations and numeri-
cal simulations. Formulating the performance of the non-
uniform updates using the resource-aware framework will
facilitate efficient selection of the parameters. Furthermore,
since this algorithm offers reduced number of classifier up-
dates, its implications would extend beyond reduced compu-
tation costs for applications when there are other costs asso-
ciated with each update, such as transmission cost between
sensor and the cloud.

5. REFERENCES
[1] Soh P., Vandenbosch G., Mercuri M. and Schreurs D., "Weara-
ble wireless health monitoring: Current developments, challenges,
and future trends," IEEE Microwave Magazine, vol. 16, no. 4, pp.
55-70, 2015.

[2] Sidiropoulos N.D., De Lathauwer L., Fu X., Huang K., Pa-
palexakis E.E. and Faloutsos C., "Tensor decomposition for signal
processing and machine learning," IEEE Transactions on Signal
Processing, vol. 65, no. 13, pp. 3551-3582, 2017.

3450

[3] Fanaee-T H. and Gama J., "Multi-aspect-streaming tensor anal-
ysis," Knowledge-Based Systems, vol. 89, pp. 332-345, 2015.

[4] Su Y., Wang H., Jing P. and Xu C., "A spatial-temporal itera-
tive tensor decomposition technique for action and gesture recogni-
tion," Multimedia Tools and Applications, vol. 76, no. 8, pp.
10635-10652, 2017.

[5] Nion D. and Sidiropoulos N.D., "Adaptive algorithms to track
the parafac decomposition of a third-order tensor," IEEE Transac-
tions on Signal Processing, vol. 57, no. 6, pp. 2299-2310, 2009

[6] Ballani J., Grasedyck L. and Kluge M., "Black box approxima-
tion of tensors in hierarchical Tucker format," Linear Algebra and
its Applications, vol. 438, no. 2, pp. 639–657, 2013

[7] Oseledets I., "Tensor-train decomposition," SIAM J. Scientific
Computing, vol. 33, no. 5, pp. 2295–2317, 2011

[8] Harshman R.A., "Foundations of the PARAFAC procedure:
Models and conditions foran “explanatory” multi-modal factor
analysis," In: UCLA working papers in pho-netics, pp. 1-84, 1970.

[9] Bottou L., "Large-scale machine learning with stochastic gradi-
ent descent," In Proceedings of COMPSTAT'2010. Physica-Verlag
HD., pp. 177-186, 2010.

[10] Lahat D., Adali T. and Jutten C., "Multimodal Data Fusion:
An Overview of Methods, Challenges, and Prospects," Proceed-
ings of the IEEE (2015), vol. 103, no. 9, pp. 1449-1477, 2015.

[11] Sutton R.S. and Barto A.G., Reinforcement Learning: An
Introduction (2nd Edition, in preparation), MIT Press, 2017.

[12] Silver D., Huang A., Maddison C., Guez A., Sifre L., Van
Den Driessche G., Schrittwieser J., Antonoglou I., Panneershelvam
V., Lanctot M. and Dieleman S., "Mastering the game of go with
deep neural networks and tree search.," Nature, vol. 529, no. 7587,
pp. 484–489, 2016.

[13] Mnih V., Kavukcuoglu K., Silver D., Rusu A., Veness J.,
Bellemare M., Graves A., Riedmiller M., Fidjeland A., Ostrovski
G. and Petersen S., "Human-level control through deep reinforce-
ment learning," Nature, vol. 518, no. 7540, pp. 529-533, 2015.

[14] Fanaee-T H. and Gama J., "SimTensor: A synthetic tensor
data generator," arXiv preprint arXiv:1406.3496, 2016.

[15] Gooch C.L., Pracht E. and Borenstein A.R., "The burden of
neurological disease in the United States: a summary report and
call to action," Annals of neurology, vol. 81, no. 4, pp. 479-484,
2017.

[16] Dewey R.B., "Management of motor complications in Parkin-
son’s disease", Neurology, vol. 62, pp. S3–S7, 2004.

[17] Davie C., "A review of Parkinson’s disease", British Medical
Bulletin, vol. 86, no. 1, pp. 109–127, 2008.

[18] Jankovic J., "Motor fluctuations and dyskinesias in Parkin-
son’s disease: clinical manifestations, " Movement Disorders, vol.
20, pp. S11–S16, 2005.

[19] Pulliam C. L., Heldman D.A., Brokaw E.B., Mera T.O., Mari
Z.K., Burack M.A., "Continuous assessment of Levodopa response
in Parkinson’s disease using wearable motion sensors", IEEE
Transactions on Biomedical Engineering, vol. 65, no. 1, pp. 159–
164, 2018.

3451

		2019-03-18T11:18:48-0500
	Preflight Ticket Signature

