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ABSTRACT

Computational methods for identifying hidden structures in high-

order data are critical for exploratory data analysis tasks. This work

proposes a joint dimensionality reduction and co-clustering algo-

rithm for tensors. A compressed representation of a tensor is ob-

tained via a Tucker-like decomposition model, whose factor matri-

ces capture the tensor co-clustering structure. Factor matrices corre-

spond to the cluster centroids of the tensor fibers per mode, whose

entries interact nonlinearly to build the tensor approximation. The

algorithm, developed based on the alternating-direction method of

multipliers, has computational complexity similar to that of a single

Tucker decomposition.

1. INTRODUCTION

Multi-way arrays, often called tensors, are becoming pervasive in

several scientific, engineering, and social science applications [1].

Understanding the hidden structure that couples the data modes (di-

mensions) interacting within a tensor without relying on preconcep-

tions about the data structure is a challenging task often faced in

exploratory data analysis. Clustering is an unsupervised learning

technique that seeks to partition a set of data into non-overlapping

groups whose elements are ‘close’ to each other according to a pre-

defined metric, thereby revealing the hidden structure of the data.

Traditionally, clustering methods have focused on partitioning ob-

jects according to a single set of features. Unlike classical clustering,

partitional co-clustering seeks to partition data into ‘blocks’ that are

similar across, e.g., both row and column features. Co-Clustering

techniques have found applications in machine learning, bioinfor-

matics, text document mining, and social network analysis due to

their ability to group data features across multiple data modes [2].

Co-clustering approaches for tensors have used ideas that ex-

tend classical clustering methods to high-order data. Graph struc-

tures derived from the tensor data have been used to develop spectral

co-clustering algorithms based on the spacey random walks and ran-

dom sampling [3, 4]. Classical clustering methods, such as K-means,

have been applied per tensor mode, thereby yielding per mode clus-

tering assignments whose Cartesian product yields the desired co-

clustering [5]. A related line of research has used variations of clas-

sical tensor decompositions, such as the CANDECOP/PARAFAC

(CP), higher-order singular value (HOSVD) and Tucker decompo-

sitions, as the basis for developing tensor co-clustering algorithms

[6, 7, 8]. For instance, the rows of the factor matrices obtained via

a regularized Tucker decomposition were used as a low-dimensional

representation for tensor data in [9]. These low dimensional repre-

sentations are clustered independently per mode and integrated as in

[5] to obtain the tensor co-clustering.
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Motivated by the link between low-dimensional tensor represen-

tations and clustering, this paper proposes a joint dimensionality re-

duction and co-clustering approach for high-order tensor data. It

seeks to construct a Tucker decomposition for the tensor such that

the columns of the factor matrices in the decomposition correspond

to the cluster centers of tensor data for each of its modes. Not only

are the clusters required to be ‘good’ representatives of the tensor

data per mode, but they are also required to serve as a ‘good’ low

dimensional representation for the data via the sum of their rank-

1 interactions. Our framework enables structural constraints such

as sparsity, non-negativity and orthogonality to be embedded in the

selection of the core tensor and factor matrices. It also allows for

various types of dissimilarity metrics to be used for capturing the

per-mode cluster structure. The proposed co-clustering algorithm

is developed based on the alternating direction method of multipli-

ers (ADMoM). The resulting ADMoM iterations reduce to famil-

iar block-coordinate descent (BCD) for solving a regularized Tucker

decomposition and a single K-means update per tensor mode. The

performance of the proposed algorithm is illustrated and compared

with other methods via numerical tests on synthetic data.

2. TENSOR PRELIMINARIES

An order-N tensor is defined as a multidimensional array Y ∈
R

D1×···×DN , where Dn ∈ N denotes the dimensionality of its n-

th mode (dimension). Tensors are natural generalizations of vectors

y ∈ R
D1 and matrices Y ∈ R

D1×D2 , which are order-1 and order-2

tensors, respectively. When working with tensors, it is often useful to

consider subsets of their entries [Y]di1 ,...,diN
:= ydi1 ,...,diN

∈ R

and to reorganize their entries into a single vector or matrix. In par-

ticular a mode-n fiber of Y is defined as a 1-dimensional subtensor

comprising the entries of Y obtained by fixing all but the n-th index,

and a slice of Y is defined as a 2-dimensional subtensor comprising

the entries of Y obtained by fixing all but two of its indices. The

mode-n matricization of Y arranges all mode-n fibers of Y into the

columns of Y(n) ∈ R
Dn×D−n , with D−n :=

∏

n′ 6=n
Dn; see [10].

The mode-n product between Y and a matrix U ∈ R
Q×Dn , de-

noted as Y ×n U, is defined as Y ×n U = UY(n) ∈ R
Q×D−n ,

where (·)′ denotes the transpose operator.

Similar to the singular value decomposition (SVD) for matrices,

it is possible to develop tensor decomposition models that represent a

tensor as a weighted sum of rank-one tensors. A rank-one tensor u1◦
· · · ◦ uN ∈ R

D1×···×DN is defined as the outer product of vectors

{un}
N
n=1, whose (i1, . . . , iN ) entry is given by

∏N

n=1 un,in , with

un,in := [un]in . In particular the Tucker decomposition models Y

as

Y =

R1
∑

i1=1

· · ·

RN
∑

iN=1

gri1 ,...,riN
(u1,i1 ◦ · · · ◦ uN,iN ) (1)

where the scalars gri1 ,...,riN
denote the entries of the core tensor
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G ∈ R
R1×···×RN , Rn ≤ Dn ∀n, and Un := [un,1 . . .un,Rn

] ∈
R

Dn×Rn , n = 1, . . . , N , are the factor matrices [10, 11]. In contrast

to the well-known CP decomposition in which gri1 ,...,riN 6= 0 if

and only if i1 = i2 = . . . = iN , the Tucker decomposition allows

weighed interactions across all columns of the Un’s, with the entries

of G defining the weights of the interactions [10]. Note that (1) can

be written compactly using the mode-n product notation as Y =
G× {U}, where G× {U} := G×1 U1 ×2 . . .×N UN .

3. CO-CLUSTERING AND TUCKER DECOMPOSITION

Let y(n),i denote the i-th column of Y(n). Given an order-N

tensor Y, we seek to jointly partition each set of mode-n fibers

{y(n),i}
D−n

i=1 , into Kn non-overlapping sets while finding esti-

mates for (G,U1, . . . ,UN ) to approximate Y as in (1). Per mode

n, the cluster centers {un,i}
Kn

i=1 obtained for the mode-n fibers

are used as the columns of the factor matrix Un ∈ R
Dn×Kn in

(1), with Rn = Kn. Let Sn ∈ {0, 1}Kn×D−n , whose entries

snk,j := [Sn]k,j , ∀k, j, n, denote cluster membership coefficients.

An snk,j = 1 if the j-th mode-n fiber belongs to cluster k and

snk,j = 0 otherwise.

An estimate for (G, {Un,Sn}
N
n=1) is given by the solution of

min
G,{Un,Sn∈Sn}N

n=1

1

2

∥

∥Y −G× {U}
∥

∥

2

F
+

ζ

2

∥

∥G
∥

∥

2

F
(2)

+

N
∑

n=1

ζn
2

‖Un‖
2
F
+

N
∑

n=1

γn
2

∥

∥Y(n) −UnSn

∥

∥

2

F

where Sn := {S ∈ {0, 1}Kn×D−n : S′1Kn
= 1D−n

}, 1m de-

notes an m × 1 vector of ones, ‖ · ‖F the Frobenious norm, and

(ζ, {ζn, γn}
N
n=1) non-negative tuning parameters. The first term in

the cost function of (2) seeks to minimize the approximation error

for Y. Each summand, say the n-th one, in the last term of the cost

in (2), together with its corresponding set of constraints, seeks to

identify a partition of the mode-n fibers of Y. In particular, the con-

straint set Sn guarantees that each feasible Sn assigns every mode-n
fiber to only one cluster. The Frobenious-norm regularizers on G

and {Un}
N
n=1 penalize large value assignments for the entries of G

and {Un}
N
n=1 and alleviate the scaling issue inherent to the term

G × {U}. Note that additional constraints, such as sparsity and

orthogonality, can be imposed on the Un’s in (2) [12].

Problem (2) is non-convex and highly nonlinear. It defines a

form of tensor co-clustering in which each entry of Y is assigned to

a co-cluster indexed by the labels of the clusters to which each one

of the N fibers (one per mode) are assigned. The dependency across

co-cluster dimensions in (2) can be tuned via the γn’s. In particu-

lar, when γn → ∞, ∀n, (2) decomposes to N separate clustering

problems, one for each set of mode-n fibers of Y.

In order to develop a practical solver for (2), it is useful to con-

sider the following related problem

min
G,{Un}N

n=1
,

{Zn,Sn∈Sn}N
n=1

1

2

∥

∥Y −G× {U}
∥

∥

2

F
+

ζ

2

∥

∥G
∥

∥

2

F
(3)

+

N
∑

n=1

ζn
2

‖Un‖
2
F +

N
∑

n=1

γn
2

∥

∥Y(n) − ZnSn

∥

∥

2

F

Subj. to Zn = Un, n = 1, . . . , N

where the auxiliary variables Zn ∈ R
Dn×Kn and corresponding

equality constraints Zn = Un, n = 1, . . . , N have been intro-

duced. These equality constraints guarantee that any feasible solu-

tion for (3) is also a feasible solution for (2). Furthermore, the cost

in (3) can now be divided into two parts: (i) one that focuses on con-

structing a good approximation G × {U} for Y with appropriate

regularizers for the core tensor and the factor matrices; and (ii) one

that focuses on partitioning the mode-n fibers of Y for each mode.

In the following section, a computationally tractable solver for (2) is

developed.

Remark 1 (Partial-Mode Clustering) Problem (2) performs full-

mode clustering of Y. It, however, can be readily adapted to ap-

plications where data partitioning for some modes of Y is not re-

quired. In this case, which is termed partial-mode clustering, one

can set γn = 0, if Y is not to be clustered along mode n and re-

move the constraints on Sn. In this case, the Un’s associated with

modes not being clustered will be chosen so that they minimize the

approximation error for Y only.

4. ADMOM TENSOR CO-CLUSTERING

In this section a numerical solver for (3) based on ADMoM is devel-

oped. First, consider the augmented Lagrangian for (3) given by

L(G, {Un,Zn,Sn,Λn}
N
n=1) =

1

2

∥

∥Y −G× {U}
∥

∥

2

F
(4)

+
ζ

2

∥

∥G
∥

∥

2

F
+

N
∑

n=1

ζn
2

‖Un‖
2
F
+

N
∑

n=1

γn
2

∥

∥Y(n) − ZnSn

∥

∥

2

F

+

N
∑

n=1

Tr
[

Λ
′
n (Zn −Un)

]

+

N
∑

n=1

ρn
2

‖Zn −Un‖
2
F

where Λn ∈ R
Dn×Kn is the Lagrange multiplier matrix associated

to the equality constraint Zn = Un, {ρn > 0}Nn=1 are positive

tuning parameters, and Tr(·) denotes the trace operator.

With τ ∈ N denoting an iteration index, the ADMoM updates

for solving (3) are given in terms of the augmented Lagrangian as

(

G
[τ+1]

, {U[τ+1]
n ,S[τ+1]

n }Nn=1

)

(5a)

= argmin
G,{Un,Sn∈Sn}N

n=1

L(G, {Un,Z
[τ ]
n ,Sn,Λ

[τ ]
n }Nn=1)

{Z[τ+1]
n }Nn=1 (5b)

= argmin
{Zn}N

n=1

L(G
[τ+1]

, {U[τ+1]
n ,Zn,S

[τ+1]
n ,Λ[τ ]

n }Nn=1)

Λ
[τ+1]
n = Λ

[τ ]
n + ρn

(

Z
[τ+1]
n −U

[τ+1]
n

)

, n = 1, . . . , N (5c)

where (5a) updates G, Un’s and Sn’s with all other variables fixed,

(5b) updates the Zn’s with all other variables fixed, and (5c) updates

the Λn’s with all other variables fixed.

Solving (5a) decomposes across (G, {Un}
N
n=1) and {Sn}

N
n=1.

The updates (G
[τ+1]

, {U
[τ+1]
n }Nn=1) are given by the solution of

min
G,{Un}N

n=1

1

2

∥

∥Y −G× {U}
∥

∥

2

F
+

ζ

2

∥

∥G
∥

∥

2

F
+

N
∑

n=1

ζn
2

‖Un‖
2
F

−
N
∑

n=1

Tr
[

Λ
′
nUn

]

+
N
∑

n=1

ρn
2

‖Zn −Un‖
2
F

(6)

which can be interpreted as a regularized Tucker decomposition

problem, where the regularizer not only penalizes the size of the
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entries of each Un, but it also penalizes the differences between

Un’s and Zn’s. Before developing a solver for (6) it is useful to

recall the following identities [10, 11]

∥

∥Y−G×{U}
∥

∥

F
=
∥

∥Y(n)−UnG(n)(ΥN,n+1 ⊗Υn−1,1)
′
∥

∥

F

=
∥

∥y(n)−[ΥN,n+1 ⊗Υn−1,1 ⊗Un]g(n)

∥

∥

F

(7a)

where Υn,m :=
⊗m

n′=n
Un′ ,

⊗m

n′=n
Un′ := Un ⊗ . . . ⊗ Um,

⊗ denotes the Kronecker product, vec(·) the vectorization operator,

y(n) := vec(Y(n)), and g(n) := vec(G(n)).
Problem (6) can be solved via a BCD algorithm, whereby each

{Un}
N
n=1 and then G are updated one at a time with all other vari-

ables fixed. With t denoting the iteration index for the BCD updates,

each Un can be updated in closed form as

U
[t+1,τ ]
n =

[

Y(n)

(

Υ
[t+1,τ ]
N,n+1 ⊗Υ

[t,τ ]
n−1,1

)

G
[t,τ ]′

(n) +Ψ
[τ ]
n

]

×

[

G
[t,τ ]
(n)

(

Ξ
[t+1]
N,n+1 ⊗Ξ

[t]
n−1,1

)

G
[t,τ ]′
(n) + θnIKn

]−1

(8)

where Υ
[t,τ ]
n,m :=

⊗m

n′=n
U

[t,τ ]

n′ , Ξ
[t,τ ]
n,m :=

⊗m

n′=n
U

[t,τ ]′

n′ U
[t,τ ]

n′ ,

Ψ
[τ ]
n := Λ

[τ ]
n + ρnZ

[τ ]
n , θn := ρn + ζn. The inverse matrix in (8)

always exists since θn > 0, ∀n, and, thus, (8) is well defined for all

factor-matrix updates U
[t+1,τ ]
n .

Once all Un’s are updated, the entries of G are updated as

g
[t+1,τ ]

(1)
=
(

Ξ
[t+1,τ ]
N,1 + ζIK

)−1

Υ
[t+1,τ ]′
N,1 y(1) (9)

where K :=
∏N

n=1 Kn. The core tensor G
[t+1,τ ]

is obtained by ap-

propriately folding the entries of g
[t+1,τ ]
(1) [10]. Note that the inverse

matrix in (9) exists for all iterations t, even when Ξ
[t+1,τ ]
N,1 is rank

deficient. After tmax iterations, the BCD updates summarized by (8)

and (9) yield G
[τ+1]

= G
[tmax,τ ]

and {U
[τ+1]
n = U

[tmax,τ ]
n }Nn=1.

Solving for {Sn}
N
n=1 decomposes across n. After using the con-

straint set Sn to rewrite the cost in (5a), computing (5a) with respect

to Sn reduces to

S
[τ+1]
n = argmin

Sn∈Sn

γn
2

D−n
∑

i=1

Kn
∑

k=1

snk,i

∥

∥

∥
y(n),i − z

[τ ]
n,k

∥

∥

∥

2

2
(10)

where z
[τ ]
n,k ∈ R

Dn denotes the k-th column of Z
[τ ]
n . Problem (12)

can be solved in closed form for each entry of S
[τ+1]
n as

s
n,[τ+1]
k,i =

{

1
∥

∥

∥y(n),i − z
[τ ]
n,k

∥

∥

∥

2
≤
∥

∥

∥y(n),i − z
[τ ]

n,k′

∥

∥

∥

2
∀k′ 6= k

0 Otherwise
.

(11)

Solving for {Zn}
N
n=1 in (5b) decomposes across Zn. Thus, (5b)

can be solved per Zn via

min
Zn

γn
2

∥

∥Y(n) − ZnSn

∥

∥

2

F
+ Tr

(

Λ
′
nZn

)

+
ρn
2

‖Zn −Un‖
2
F
.

(12)

Problem (12) can be solved in closed form per column of Zn as

z
[τ+1]
n,k = c

n,[τ+1]
k

(

Dn
∑

i=1

s
n,[τ+1]
k,i y(n),i −

1

γn
a
[τ ]
n,k

)

(13)

Algorithm 1: ADMoM Tensor Co-Clustering Algorithm

Data: Y, G
[0]

, {U
[0]
n }Nn=2, {Λ

[0]
n }Nn=1, and the tuple

(γ, ζ, {ζn, ρn, γn}
N
n=1).

1 begin

2 Construct {Y(n)}
N
n=1 from Y.

3 for τ = 1, . . . , τmax do

4 Set G
[1,τ ]

= G
[τ+1]

, {U
[1,τ ]
n = U

[τ+1]
n }Nn=1.

5 for t = 1, . . . , tmax do

6 for n = 1, . . . , N do

7 Construct G
[t,τ ]
(n) from G

[t,τ ]
.

8 Compute U
[t+1,τ ]
n via (8).

9 Compute g
[t+1,τ ]
(1) via (9).

10 Fold g
[t+1,τ ]
(1) into G

[t+1,τ ]
.

11 Set G
[τ+1]

=G
[tmax,τ ]

, {U
[τ+1]
n =U

[tmax,τ ]
n }Nn=1.

12 for n = 1, . . . , N do

13 Compute the entries of S
[τ+1]
n via (11).

14 Compute each column of Z
[τ+1]
n via (13).

15 Update Λ
[τ ]
n via (5c).

where c
n,[τ+1]
k :=

(

∑Dn

i=1 s
n,[τ+1]
k,i + ρn

γn

)−1

, a
[τ ]
n,k := λ

[τ ]
k −

ρnu
[τ+1]
n,k , λ

[τ ]
k denotes the k-th column of Λ

[τ ]
n , and u

[τ+1]
n,k the

k-th column of U
[τ+1]
n . Note that ∀n, c

n,[τ+1]
k always exists since

ρn/γn > 0 and, thus, (13) is well defined.

The ADMoM Tensor Co-clustering (ATCO) algorithm for solv-

ing (3) is summarized as Algorithm 1. Note that updates (10)

and (12) can be carried out independently, in parallel, for each

mode n = 1, . . . , N . Per iteration τ , small N and with Kmax :=
max{K1, . . . ,KN} and Dmax := max{D−1, . . . , D−N}, the

time computational complexity of the BCD updates is domi-

nated by the BCD-iteration computational’s complexity given by

O(tmax(NK3
max + K

3
+ 2DmaxK)) where the first two terms

in the sum correspond to the matrix inverse operations in (8) and

(9), and the last term to the computation of the first matrix on the

right-hand side of (8).

Remark 2 (On the convergence of the BCD iterations) Let the

cost in (5a) be denoted as f(G,U1, . . . ,UN), where each ele-

ment in the argument of f corresponds to an optimization block

component. Since f is differentiable and its partial derivatives

per optimization block are continuous, f is also continuously dif-

ferentiable. Given that f is strictly convex with respect to each

optimization block when all other ones are fixed, its minimizers

per optimization block, summarized by (8) and (9), are unique.

Per τ , it follows from [13, Prop. 3.7.1] that every limit point of

{(G
[t,τ ]

, {U
[t,τ ]
n }Nn=1)}t≥1 is a stationary point for f .

Remark 3 (On the convergence of the ADMoM iterations) The

convergence of a nonconvex ADMoM is an active area of research

[14, 15, 16]. Although a full understanding of ADMoM’s behavior

in the general nonconvex case is still lacking, there are a few theo-

retical results that can help to analyze the behavior of Algorithm 1,

e.g., see [17]. For instance, when tmax = 1, the results in [18] and

[17] can be used to show that if the iterations in (5) converge, they

converge to a Karush-Kuhn-Tucker point of (3).
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(a) Augmented Lagrangian (ρ = 10).
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(b) LS approximation for Y (ρ = 10).
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(c) Equality-constraints violation
(ρ = 10).
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(d) Equality-constraints violation
(tmax = 1).

Fig. 1: Numerical evolution of ATCO with γ = 1.

5. NUMERICAL EXPERIMENTS

In this section the performance of the proposed co-clustering algo-

rithm is illustrated on a synthetic 3rd-order tensor Y ∈ R
50×60×25.

Tensor Y was constructed by inserting 3 non-overlapping sub-

tensors (cubes) whose entries are uniformly distributed in the real-

valued intervals [3, 5], [2, 3] and [1, 4]. Independent and identically

distributed zero-mean Gaussian noise with variance σ2 = 0.4
was added to each entry of the resulting tensor to obtain Y.

ATCO was executed using ζ = 100, ζ1 = ζ2 = ζ3 = 0.01,

K1 = K2 = K3 = 4 and ρ1 = ρ2 = ρ3 = ρ, with the

additional cluster per mode added to capture all fibers not be-

longing to any of the clusters induced by the artificial cubes.

The HOSVD was used for initializing G
[0]

, U
[0]
2 and U

[0]
3 . All

Λ
[0]
n ’s were set at random. The figures of merit used were Φ[τ ] :=

ρ

2

∑3
n=1 ||Z

[τ ]
n −U

[τ ]
n ||2F , Ω[τ ] := 1

2

∥

∥

∥
Y −G

[τ ]
×
{

U[τ ]
}∥

∥

∥

2

F
and

L[τ ] := L(G
[τ ]
, {U

[τ ]
n ,Z

[τ ]
n ,S

[τ ]
n ,Λ

[τ ]
n }3n=1), which illustrate the

aggregate cost of equality-constraints violation, the quality of the

least-squares (LS) approximation for Y, and the evolution of the

augmented Lagrangian, respectively.

The effect of the number of BCD iterations, tmax, executed for

solving (5a) on the convergence of the ADMoM iterations was ex-

plored numerically. It was observed that L[τ ] converges as τ → ∞,

even for tmax = 1, as illustrated in Fig. 1a. Note that the quality

of the solution obtained in terms of co-clustering quality and tensor

reconstruction quality changed as a function of tmax, especially for

small tmax values. The effect of tmax was more evident on Ω[τ ],

which showed that a small value of tmax translated to a larger τ for

reaching a similar LS reconstruction error for Y as shown in Fig.

1b. The parameter ρ controls how quickly the equality-constraints

violations decrease as shown in Figs. 1c and 1d. Although ρ did not

significantly impact how quickly L[τ ] would converge, its choice af-

fected the convergence value of L[τ ] and Ω[τ ]. Larger values of ρ
yielded larger values for both L[τ ] and Ω[τ ] as τ → ∞.

The co-clustering performance of ATCO, with tmax = 1 and

ρ = 400, was compared with that of a non-negative CP decompo-
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Fig. 2: Graphical illustration of the co-clustering per mode pairs

obtained via the rank-3 approximation yielded by NNCP (top row),

and via the fiber memberships yielded by ATCO (bottom row).

sition (NNCP) of rank 3 [6], an approximate co-clustering method

(ACC) as suggested in [5], and the dynamic co-clustering (DCC)

method proposed in [9]. All the methods considered herein, rely on

some form of low-dimensional tensor decomposition that yields an

approximation Ŷ to Y. In ACC, the approximate partitioning of

Y per mode-n was obtained by partitioning the rows of the corre-

sponding Y(n) via the K-means algorithm with K = 4. In DCC,

the factor matrices obtained via NNCP were clustered across their

rows via K-means, with K = 4, to obtain the tensor partitioning per

mode. For all methods, the co-clustering assignment was computed

via the Cartesian product of clustering assignments per mode.

Table 1 shows a comparison of the reconstruction error and

the Fowlkes-Mallows index (FMI) obtained for the co-clustering

methods considered [19]. Since NNCP does not naturally yield

co-clustering memberships for Y, no FMI score was computed for

it. Instead Fig. 2 shows the clustering membership assignments

obtained by ATCO and compares them with rank-3 matrix approxi-

mations constructed via NNCP for different mode-pairs via the CP

decomposition factors. These matrices can be used to construct a

co-clustering for Y after using a data-dependent thresholding rule to

identify how entries of Y should be assigned to co-clusters. ATCO

not only yields factor matrices that illustrate the rank-1 structure of

Y, but it also yields assignment memberships per entry directly.

Metric ATCO NNCP ACC DCC

1
2
||Y − Ŷ||2F 6675.19 6700.39 23,327.52 6700.39

FMI 0.5656 — 0.1705 0.2110

Table 1: Reconstruction-error and co-clustering quality comparison.

6. CONCLUSIONS

ATCO is a new tensor dimensionality reduction and co-clustering al-

gorithm that combines a tensor-approximation and clustering crite-

ria. The tensor approximation is obtained via a Tucker-like decom-

position, which can naturally accommodate various type of struc-

tural constraints. ATCO’s performance was illustrated and compared

with other co-clustering methods via numerical experiments on syn-

thetic data. A detailed analysis of the convergence of ATCO remains

as an ongoing research direction. Nevertheless, it was empirically

observed that ATCO converges even when only one BCD step across

the block optimization variables is used. Further experimentation on

real datasets is ongoing.
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