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ABSTRACT

A video tensor is an organized multidimensional array of numerical
values. In this paper, we explore the underlying manifold geome-
try of a video tensor by factorizing it using modified higher order
singular value decomposition (HOSVD). Each factor (mode matrix)
of a video tensor obtained after modified HOSVD can be thought
of as a subspace and hence represents a point in Grassmann mani-
fold (MGM). These factors cumulatively represent a point in product
Grassmann manifold (MPGM). We propose a novel kernel for MPGM
that measures the similarity between two points in MPGM and gen-
erates a kernel-gram matrix. For representation learning, we diag-
onalize the obtained kernel-gram matrix and generate a small fixed
length representation corresponding to each point in MPGM . Classi-
fication is performed in sparse framework with minimum residual er-
ror as classifier. Experimentation is carried out over Cambridge hand
gesture and UMD Keck body gesture databases for both static and
dynamic settings. Experimental study shows that even with small
length feature representation, there is a significant improvement in
classification results as compared to state-of the-art techniques.

Index Terms— Grassmann manifold, product Grassmann mani-
fold, video tensor, sparse representation, matrix diagonalization, ker-
nel methods.

1. INTRODUCTION

Human gestures convey meaningful information through physical
movement of various body parts such as arm, finger, leg, eye etc.
However, recognizing gestures from videos has been a challenging
problem for vision community from several years. Different human
body structures, way of performing the gestures, clothing, pose vari-
ations and various dynamic conditions such as light variation or oc-
clusion make the recognition task difficult. Several works [1–9] exist
in literature with various classification strategies for gesture/action
recognition task.

The first step in gesture recognition is to learn descriptive and
discriminative features which correspond to a gesture video. Holis-
tic features based representations [1] like Motion History Image and
Motion Energy Image encode the gesture dynamics into a single im-
age but are very sensitive to change in view point. A global feature
representation by extracting the space-time shape properties is pro-
posed in [2]. Space-time interest point based approaches such as
3D-SIFT [3], HOG-3D [10] etc. extract the local representations
but capture only short temporal information. To capture features for
long duration, [4] and [5] use trajectory based features like HOF,
MBH respectively. Introduction of deep networks in action recogni-
tion unified the representation learning and classification task into a
single framework. Though deep networks [6,7] show a good recog-
nition performance, it comes at the cost of millions of parameters

learned by training networks. Despite having a fair recognition per-
formance, all of the above methods do not explore the true under-
lying geometry of videos data points. By underlying geometry we
mean either the subspace structure of data or the manifold structure.
Being sensitive to such structures is important, since it enables us-
age of distance measures suitable for such structures. In the methods
listed above, features are points in Hilbert space & Euclidean geom-
etry is followed for measuring similarity and hence classification.
However true geometry of data points can be captured by model-
ing them in Riemannian manifold and by considering Riemannian
geometry.

Mathematical modeling of data as points in product manifold
has been explored by many researchers. A product manifold is a
Cartesian product of simple factor manifolds with dimensionality
equal to the sum of all factor dimensions [11]. The use of prod-
uct manifold in vision applications are by Ma et al. [12] for 3-D
motion, Datta et al. [13] in local linear motion models and by Shaji
et al. [14] in structure from motion.

A notable work in modeling the geometry of action videos is
done by Lui et al. [8, 9]. They modeled action videos as points in
product space of three Grassmann manifolds [15], MPGM , and used
geodesic distance as a similarity measure. Though the method has
the advantage of simplicity, it suffers from the following limitations:
1) There is a no unique representation for a point in MPGM as each
factor manifold represents a subspace and hence state-of-the-art Eu-
clidean space based classifiers cannot be directly used; the only clas-
sifier that can be used is K-nearest neighbor (KNN) as it uses only
the distance between points. 2) Space complexity of each point in
MPGM is very high as it is represented by three matrices and their
size is directly proportional to the video size. 3) Each MPGM point
is represented by its own descriptive features which are not good for
classification task requiring discriminative features.

We address these issues in our work by proposing a kernel that
essentially maps the points in MPGM to Hilbert space Rd without
compromising the true manifold geometry. The obtained features are
of small length and carry the discriminative information and hence
suited for the classification task. The main contribution of this work
is the novel product space based kernel that finds the non-negative
similarity score between two points in MPGM . Overall we create
a classification pipeline starting from modified HOSVD representa-
tion of videos, followed by a kernel, which is linearized to obtained
features which are descriptive as well as discriminative. Experimen-
tation shows a marked improvement in performance over the state-
of-the-art.

The rest of the paper is organized as follows: Section 2 describes
the tensor decomposition followed by the proposed kernel and rep-
resentation learning in Section 3 and 4 respectively. Sparse repre-
sentation (SR) based classifier is explained in Section 5. Detailed
experimental analysis is given in Section 6 followed by conclusion
in Section 7.
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2. VIDEO TENSOR DECOMPOSITION

In order to make this paper self contained, a brief review of tensor
decomposition [16] using HOSVD is given in this section. A video
tensor is a 3-dimensional array ( order 3 data tensor) and hence can
be represented as a point in R(n1×n2×n3), where n1, n2, n3 denote the
image height, image width and video depth (number of frames) re-
spectively. In general, a K-order data tensor, T ∈R(n1×···×ni×···×nK),
can be factorized using HOSVD [17] into K different modes as

T =CCC×1 UUU (1) · · ·×i UUU (i) · · ·×K UUU (K). (1)

UUU (i) ∈ Rni×ni is an orthogonal matrix representing ith mode of
T . CCC ∈ R(n1×···×ni×···×nK) is the core tensor that denotes the inter
mode interaction and generally non diagonal for higher order ten-
sors. ×i denotes the ith mode multiplication. Matrix UUU (i) is obtained
via matrix unfolding of tensor T for ith mode as

TTT (i) =UUU (i)
ΣΣΣ
(i)VVV (i)T

, (2)

where TTT (i) ∈Rni×(n1...ni−1ni+1...nK) is ith mode unfolded matrix repre-
sented by single order row vectors and K−1 order column vectors.
UUU (i) and VVV (i) are the matrices corresponding to left and right singu-
lar vectors of T (i) obtained by SVD which span the column and row
space of TTT (i) respectively. ΣΣΣ

(i) is a diagonal matrix with singular
values.

However, representing a tensor by UUU (i)’s as point in product
manifold is not a good idea. The main reasons being: 1) UUU (i) ∈
Rni×ni is an orthogonal matrix that represents a point in special or-
thogonal group, SO(ni), and no closed form solution for distance
between two points exists in SO(ni) [15]. 2) Rotating UUU (i) by a
rotation matrix R(i) ∈ Rni×ni results in a different point in SO(ni)
though both span the same subspace and this is highly undesirable.

So a better strategy is to represent the tensor as a point in product
of MGM’s [8] than the product of SO’s. This can be easily achieved
by modifying the HOSVD as

T = ĈCC×1 VVV (1) · · ·×i VVV (i) · · ·×K VVV (K),

where VVV (i) ∈ R(n1...ni−1ni+1...nK)×ni denotes the column span of TTT (i)T

and ĈCC ∈ R(n2...nK)×···×(n1...ni−1ni+1...nK)×···×(n1...nK−1) is the core ten-
sor. In this work we use this representation. In order to overcome
the disadvantages of this representation mentioned in the introduc-
tion, we define a kernel in MPGM which is explained in the next
section.

3. THE PROPOSED KERNEL

We propose a novel kernel that measures the similarity between two
points in MPGM . Let Vl = {VVV

(1)
l , . . . ,VVV (i)

l , . . . ,VVV (K)
l } represent a

point in MPGM = M (1)
GM × ·· · ×M (i)

GM × ·· · ×M (K)
GM , where VVV (i)

l ∈
M (i)

GM . We generate the kernel function by measuring similarities
between the corresponding factor manifolds of MPGM as

k(Vl ,Vm) =
K

∑
i=1

wi||VVV
(i)T

l VVV (i)
m ||2F , (3)

k : MPGM ×MPGM → R+. For each of the ith factor manifold, pro-
jection distance [18] between two points can be expressed as

d2
pro j(VVV

(i)
l ,VVV (i)

m ) = ni−||VVV
(i)T

l VVV (i)
m ||2F . (4)

Projection distance is `2 norm of the sine of principal angles be-
tween subspaces while geodesic distance [15] is only `2 norm of the
same. Both projection and geodesic distances are same for small
values of angles while distances are proportional for high value of
angles. The kernel proposed in equation 3 is derived from the pro-
jection distance which is an approximation to the geodesic distance
and hence preserves the geometry.

wi (wi > 0) represents the weight corresponding to individual
kernel for ith factor manifold, M (i)

GM . wi is a controlling parame-
ter that decides how much weightage should be given to different
modes. Low weightage can be given to those modes which are not
discriminative for different classes. Selection of weights is data spe-
cific and can be fixed empirically. Since points on M (i)

GM represent

the subspaces, column vectors of VVV (i)
l denotes the basis for subspaces

which obviously can not be unique. To make the kernel function
k(Vl ,Vm) as rotation invariant to different representations of VVV (i)

l ’s

and VVV (i)
m ’s, we need to satisfy an extra well-definedness condition

along with Mercer’s condition [19] of positive definiteness.
Positive definiteness - A kernel is positive definite kernel func-

tion if

∑
l,m

clcm k(Vl ,Vm)≥ 0 ∀cl ,cm ∈ R
Proof.

∑
l,m

clcm k(Vl ,Vm) = ∑
l,m

clcm

K

∑
i=1

wi||VVV
(i)T

l VVV (i)
m ||2F

= ∑
l,m

clcm

K

∑
i=1

wi tr(VVV (i)T

l VVV (i)
m VVV (i)T

m VVV (i)
l )

=
K

∑
i=1

wi ∑
l,m

clcm tr(VVV (i)
l VVV (i)T

l )(VVV (i)
m VVV (i)T

m )

=
K

∑
i=1

wi tr(∑
l

clVVV
(i)
l VVV (i)T

l )(∑
m

cmVVV (i)
m VVV (i)T

m )

=
K

∑
i=1

wi||∑
l

clVVV
(i)
l VVV (i)T

l ||2F ≥ 0, ∵ wi > 0.

Well-definedness- A kernel is well defined if it is invariant to
different subspace representations, i.e,

k(VlRl ,VmRm) = k(Vl ,Vm). (5)

Here Rl = {RRR
(1)
l , . . . ,RRR(i)

l , . . . ,RRR(K)
l }, and RRR(i)

l ∈ SO(ni) denotes ni×
ni dimensional orthogonal rotation matrix.

Proof.

k(VlRl ,VmRm) = Σ
K
i=1wi||(VVV

(i)
l RRR(i)

l )TVVV (i)
m RRR(i)

m ||2F ,

= Σ
K
i=1wi||VVV

(i)T

l VVV (i)
m (RRR(i)T

l RRR(i)
m )||2F = Σ

K
i=1wi||VVV

(i)T

l VVV (i)
m (RRR(i))||2F

= Σ
K
i=1wi||VVV

(i)T

l VVV (i)
m ||2F = k(Vl ,Vm)

Fig 1. shows the pictorial illustration of proposed kernel. Ges-
ture video tensors Tl and Tm are decomposed into respective core
tenors and three mode matrices. Each mode matrix represents a sub-
space and hence all the matrices for that mode are modeled as points
in a factor manifold, MGM . Cartesian product of these three factor
manifolds forms the MPGM . Kernel k(Vl ,Vm) finds the similarity
measure by weighted sum of similarity measures of points in the
factor manifolds.
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Fig. 1: Pictorial illustration of the proposed kernel

Algorithm 1 The proposed method

Inputs:
(i) Training video tensor database D = {Tl , tl}N

l=1, where tl ∈
{1,2, ...,c} denotes gesture class label.

(ii) Test video tensor Ttest .
1: Procedure:
2: Decompose Tl into Vl = {VVV

(1)
l , . . . ,VVV (i)

l , . . . ,VVV (K)
l } using modi-

fied HOSVD
where Vl ∈MPGM ,VVV (i)

l ∈M (i)
GM such that

MPGM = M (1)
GM×·· ·×M (i)

GM×·· ·×M (K)
GM

3: Compute ΨΨΨtrain and ψψψ(.,Vtest) using kernel function

k(Vl ,Vm) = Σ
K
i=1wi||VVV

(i)T

l VVV (i)
m ||2F ,

4: Factorize ΨΨΨtrain using SVD

ΨΨΨtrain = PPPΛΛΛNPPPT .

5: Generating the d-dimensional feature representation (d ≤ N)
corresponding to each tensor by linearizing the kernel

XXXd
train = ΛΛΛd

− 1
2 PPPT

ΨΨΨtrain,

xxxd
test = ΛΛΛ

− 1
2

d PPPT
ψψψ(.,Vtest),

where ΛΛΛd = ΛΛΛN(1 : d,1 : N).
6: Obtain sparse coefficients ŷyy by solving,

ŷyy = argmin
yyy
||xxxd

test −XXXd
trainyyy||22 +α||yyy||1.

7: Obtain label by minimizing residual error,

label(xxxd
test) = argmin

j=1,2,...,c
||xxxd

test −XXXd
trainΓ j||22.

8: label(Ttest) = label(xxxd
test).

Outputs:
(i) label(Ttest).

4. REPRESENTATION LEARNING USING KERNEL
LINEARIZATION

We generate a kernel-gram matrix ΨΨΨtrain ∈RN×N using kernel func-
tion k(Vl ,Vm) from equation 3. Kernel linearization [19, 20] is the

process of obtaining the virtual feature representations in mapped
space by diagonalizing the kernel-gram matrix. Being a symmetric
matrix, Ψtrain can be decomposed as

ΨΨΨtrain = PPPΛΛΛNPPPT = (ΛΛΛ
1
2
NPPPT )T (ΛΛΛ

1
2
NPPPT ), (6)

where PPP is an N×N matrix with orthonormal columns and ΛΛΛN is
a diagonal matrix of singular values. Each entry of ΨΨΨtrain can be
thought of as an inner product between the mapped signals in Hilbert
space, H , i.e. : ΨΨΨtrain(l,m) = k(Vl ,Vm) = 〈φ(Vl),φ(Vm)〉 with
mapping φ : MPGM →H . Therefore ΨΨΨtrain can also be decomposed
as

ΨΨΨtrain = Φ(V )T
Φ(V ) = (XXXN

train)
T (XXXN

train), (7)

where V = {Vl}N
l=1 denotes the complete set of training points

in MPGM and Φ(V ) = [φ(V1) . . .φ(Vl) . . .φ(VN)]. lth column of
XXXN

train ∈ RN×N represents an N-dimensional virtual feature corre-
sponding to Vl and hence can be represented as

XXXN
train = ΛΛΛ

1
2
NPPPT = ΛΛΛ

− 1
2

N PPPT
ΨΨΨtrain. (8)

Here inverse is corresponding to non-zero diagonal entries only.
Since all the singular values are not significant, a small length repre-
sentation can be generated by considering d(d < N) singular values
as

XXXd
train = ΛΛΛ

− 1
2

d PPPT
ΨΨΨtrain. (9)

ΛΛΛd is obtained by selecting first d rows of ΛΛΛN and each column
of XXXd

train represents a d- length vector. Similarly feature representa-

tion for a test point Vtest can be written as xxxd
test = ΛΛΛ

− 1
2

d PPPT
ψψψ(.,Vtest),

where ψψψ(.,Vtest) = [k(V1,Vtest) . . .k(Vl ,Vtest) . . .k(VN ,Vtest)]
T .

5. SPARSE REPRESENTATION BASED CLASSIFIER

We employ SR based classifier for classification task. Each xxxd
test is

expressed as a combination of few training examples from XXXd
train and

sparse coefficient vector ŷyy is obtained by solving

ŷyy = argmin
yyy
||xxxd

test −XXXd
trainyyy||22 +α||yyy||1, (10)

where ŷyy = [ŷyy1 . . . ŷyy j . . . ŷyyc]
T denotes the N length sparse representa-

tion corresponding to xxxd
test and ŷyy j as jth class coefficients. α is the
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Table 1: Recognition results on Cambridge hand gesture dataset

Method Set1 Set2 Set3 Set4 Accuracy
TCCA [21] 81% 81% 78% 86% 82±3.5 %
RLPP [23] 86% 86% 85% 88% 86.3±1.3 %
TB [24] 88% 84% 85% 87% 86 ± 3.0%
PM +1-NN [8] 89% 86 % 89% 87% 88±2.1 %
PM + Regression [9] 93% 89% 91% 94% 91.7±2.3%
gSC [25] 93% 92% 93% 94% 93.3±0.9 %
Proposed approach 95% 94% 97% 95% 95.3 ± 1.3%

Table 2: Recognition results on UMD Keck body gesture dataset

Method Static Setting Dynamic Setting
HOG3D [26] - 53.6 %
Shape Manifold [27] 82% -
MMI +SIFT [28] 95% -
TB [24] 92.1 % 91.1 %
Prototype-Tree [29] 95.2 % 91.1 %
PM + 1-NN [8] 92.9% 92.3 %
PM + Regression [9] 94.4 % 92.3 %
Proposed approach 100 % 93.5 %

sparsity parameter. Class label is obtained by minimizing the resid-
ual error as

label(xxxd
test) = argmin

j=1,2,...,c
||xxxd

test −XXXd
trainΓ j||22. (11)

Here Γ j is a characteristic function that picks coefficients corre-
sponding to jth class only. Algorithm 1 shows the pseudo-code of
the proposed approach.

6. EXPERIMENTAL ANALYSIS

In order to validate the proposed approach, we have performed ex-
perimentations over two datasets for gesture recognition task namely
Cambridge hand gesture database [21] and UMD Keck body ges-
tures database [22]. We have confined our experimentation to only
these two datasets since papers related to gesture recognition have
given their results only for these datasets. The detailed description
of these databases is given below:

(i) Cambridge hand gesture database [21]- consists of 900
video sequences of 9 hand movements gesture classes with
100 images per class. These hand movements are defined
by 3 primitive shapes and 3 primitive motions. Each ges-
ture is performed by 2 persons in 10 arbitrary motions under
5 different illumination conditions. These 5 illumination
conditions are labeled as SET1 to SET5.

(ii) UMD Keck body gestures database [22]- consists of 14 dif-
ferent gesture class videos of military signals like turn left,
turn right, stop etc. These gestures are performed by 3 sub-
jects and videos are recorded in both static and dynamic con-
ditions. In static condition, both camera and subject remain
stationary while performing gesture and total of 126 videos
are recorded. In dynamic condition, 168 videos are recorded
for both camera and subject moving.

For Cambridge hand gesture database, we have used the stan-
dard protocol followed by Kim and Cipolla [21] for recognition task

Fig. 2: Classification accuracy as a function of feature dimension for
Cambridge hand and UMD keck body dataset (dynamic settings).

in which SET5 (videos under normal illumination) is used for train-
ing and remaining for testing. Each video is resized to a fixed size
of 20× 20× 32 by collecting the middle 32 frames. No space-time
alignment on videos is performed. We have fixed all the wi’s as 1 in
all of the experiments. Sparsity parameter α is tuned over a range of
values. Recognition results on different illumination sets are shown
in Table 1. It is evident from the results that our approach shows
a significant improvement in classification accuracy. Compared to
other product manifold based approaches [8,9], the proposed method
gives 4% to 7% increment in classification performance.

For classification on UMD Keck body gestures database, first we
have cropped the videos by tracking the region of interest by a cor-
relation filter. We have resized all the videos to 20×20×40 without
performing any space-time alignment. Videos with lesser frames are
appended with initial frames to make them of fixed size. Standard
protocol followed by Lin et al. [29] is used in both static and dy-
namic settings. In static settings, we have used leave one subject out
protocol(LOSO). In dynamic settings, we have used videos captured
under the static environment for training and dynamic environment
for testing. Table 2 shows the performance comparison of our ap-
proach with other manifold based techniques under same protocol.
100% accuracy is achieved in static settings even with small feature
representation of length 20. This is due to the reason that videos are
recorded in ideal settings and variation due to pose and background
clutter are not present. However for dynamic settings where change
in background and pose variations are present, 1% improvement in
result can be seen. Fig. 2 shows the change in classification accuracy
with varying feature length. It can be seen in the figure that maxi-
mum performance is achieved for Cambridge hand and UMD keck
body datasets at feature dimension of 40 and 70 respectively after
which performance gets saturated.

7. CONCLUSION

We have shown that a discriminative as well as descriptive feature
representation for videos can be obtained by defining a kernel in
product of Grassmann manifolds, MPGM . This is evident from the
significant improvement in classification results in all except one set
of data, where we have a marginal improvement. Comparing to deep
neural networks, advantages of the proposed approach can be sum-
marized in terms of its simplicity and no prior training. Though the
approach is entirely pixel based i.e no higher level features are ex-
tracted, noteworthy classification performance is achieved.
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[4] Heng Wang, Alexander Kläser, Cordelia Schmid, and Cheng-
Lin Liu, “Action recognition by dense trajectories,” in Com-
puter Vision and Pattern Recognition (CVPR), 2011 IEEE Con-
ference on. IEEE, 2011, pp. 3169–3176.

[5] Mihir Jain, Herve Jegou, and Patrick Bouthemy, “Better ex-
ploiting motion for better action recognition,” in Proceedings
of the IEEE conference on computer vision and pattern recog-
nition, 2013, pp. 2555–2562.

[6] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani,
and Manohar Paluri, “Learning spatiotemporal features with
3d convolutional networks,” in Proceedings of the IEEE inter-
national conference on computer vision, 2015, pp. 4489–4497.

[7] Christoph Feichtenhofer, Axel Pinz, and Richard P Wildes,
“Spatiotemporal multiplier networks for video action recog-
nition,” in 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). IEEE, 2017, pp. 7445–7454.

[8] Yui Man Lui, J Ross Beveridge, and Michael Kirby, “Action
classification on product manifolds,” in Computer Vision and
Pattern Recognition (CVPR), 2010 IEEE Conference on. IEEE,
2010, pp. 833–839.

[9] Yui Man Lui, “Human gesture recognition on product man-
ifolds,” Journal of Machine Learning Research, vol. 13, no.
Nov, pp. 3297–3321, 2012.

[10] Alexander Klaser, Marcin Marszałek, and Cordelia Schmid, “A
spatio-temporal descriptor based on 3d-gradients,” in BMVC
2008-19th British Machine Vision Conference. British Ma-
chine Vision Association, 2008, pp. 275–1.

[11] John M Lee, “Smooth manifolds,” in Introduction to Smooth
Manifolds, pp. 1–29. Springer, 2003.

[12] Yi Ma, Jana Kosecka, and Shankar Sastry, “Optimal motion
from image sequences: A riemannian viewpoint,” in In Pro-
ceeding of the Conference on Mathematical Theory of Net-
works and Systems. Citeseer, 1998.

[13] Ankur Datta, Yaser Sheikh, and Takeo Kanade, “Modeling the
product manifold of posture and motion,” in Computer Vision
Workshops (ICCV Workshops), 2009 IEEE 12th International
Conference on. IEEE, 2009, pp. 1034–1041.

[14] Appu Shaji, Sharat Chandran, and David Suter, “Manifold op-
timisation for motion factorisation,” in Pattern Recognition,
2008. ICPR 2008. 19th International Conference on. IEEE,
2008, pp. 1–4.

[15] Alan Edelman, Tomás A Arias, and Steven T Smith, “The
geometry of algorithms with orthogonality constraints,” SIAM
journal on Matrix Analysis and Applications, vol. 20, no. 2, pp.
303–353, 1998.

[16] Tamara G Kolda and Brett W Bader, “Tensor decompositions
and applications,” SIAM review, vol. 51, no. 3, pp. 455–500,
2009.

[17] Lieven De Lathauwer, Bart De Moor, and Joos Vandewalle,
“A multilinear singular value decomposition,” SIAM journal
on Matrix Analysis and Applications, vol. 21, no. 4, pp. 1253–
1278, 2000.

[18] Zhiwu Huang, Ruiping Wang, Shiguang Shan, and Xilin Chen,
“Projection metric learning on grassmann manifold with appli-
cation to video based face recognition,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2015, pp. 140–149.

[19] Alex J Smola and Bernhard Schölkopf, Learning with kernels,
vol. 4, Citeseer, 1998.

[20] Krishan Sharma, Shikha Gupta, AD Dileep, and Renu Rame-
shan, “Scene image classification using reduced virtual feature
representation in sparse framework,” in 2018 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2018, pp. 2701–2705.

[21] Tae-Kyun Kim, Shu-Fai Wong, and Roberto Cipolla, “Ten-
sor canonical correlation analysis for action classification,” in
Computer Vision and Pattern Recognition, 2007. CVPR’07.
IEEE Conference on. IEEE, 2007, pp. 1–8.

[22] Zhuolin Jiang, Zhe Lin, and Larry Davis, “Recognizing hu-
man actions by learning and matching shape-motion prototype
trees,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 34, no. 3, pp. 533–547, 2012.

[23] Mehrtash T Harandi, Conrad Sanderson, Arnold Wiliem, and
Brian C Lovell, “Kernel analysis over riemannian manifolds
for visual recognition of actions, pedestrians and textures,” in
Applications of Computer Vision (WACV), 2012 IEEE Work-
shop on. IEEE, 2012, pp. 433–439.

[24] Yui Man Lui, “Tangent bundles on special manifolds for action
recognition,” IEEE Transactions on Circuits and Systems for
Video Technology, vol. 22, no. 6, pp. 930–942, 2012.

[25] Mehrtash Harandi, Richard Hartley, Chunhua Shen, Brian
Lovell, and Conrad Sanderson, “Extrinsic methods for cod-
ing and dictionary learning on grassmann manifolds,” Inter-
national Journal of Computer Vision, vol. 114, no. 2-3, pp.
113–136, 2015.

[26] Piotr Bilinski and Francois Bremond, “Evaluation of local de-
scriptors for action recognition in videos,” in International
Conference on Computer Vision Systems. Springer, 2011, pp.
61–70.

[27] Mohamed F Abdelkader, Wael Abd-Almageed, Anuj Srivas-
tava, and Rama Chellappa, “Silhouette-based gesture and ac-
tion recognition via modeling trajectories on riemannian shape
manifolds,” Computer Vision and Image Understanding, vol.
115, no. 3, pp. 439–455, 2011.

[28] Qiang Qiu, Zhuolin Jiang, and Rama Chellappa, “Sparse
dictionary-based representation and recognition of action at-
tributes,” in Computer Vision (ICCV), 2011 IEEE International
Conference on. IEEE, 2011, pp. 707–714.

[29] Zhe Lin, Zhuolin Jiang, and Larry S Davis, “Recognizing ac-
tions by shape-motion prototype trees,” in Computer Vision,
2009 IEEE 12th International Conference on. IEEE, 2009, pp.
444–451.

3441


		2019-03-18T10:53:13-0500
	Preflight Ticket Signature




