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ABSTRACT

Real multi-way data may suffer from missing entries, noise
and outliers simultaneously. The recently proposed tubal nu-
clear norm (TNN) has shown its superiority in tensor comple-
tion. However, statistical analysis of TNN based models is still
deficient. This paper aims to robustly recover a polluted incom-
plete tensor with rigorous statistical guarantee. Specifically,
an estimator based on a weighed variant of TNN is proposed
to complete a low-tubal-rank tensor corrupted by element s-
parse errors or slice sparse sample outliers from partial noisy
observations. Non-asymptotic upper bounds on the estimation
error are established and further proved to be minimax optimal
up to a log factor. Sharpness of the upper bounds is verified
on synthetic datasets and superiority of the proposed estimator
is demonstrated through robust video inpainting.

Index Terms— robust tensor completion, tensor SVD,
tubal rank, statistical performance

1. INTRODUCTION

To recover a multi-way array from partial observations, ten-
sor completion has been an active topic in signal processing,
machine learning, computer vision, etc [1–4]. Due to various
reasons such as partial sensor failures, communication errors,
and occlusion by obstacles, the data tensor may face missing
entries, noise and outliers at the same time [5–7]. In these
circumstances, one needs to complete the tensor robustly.

Obviously, it is impossible to complete a tensor from par-
tial and corrupted observations unless some additional as-
sumptions are made. In this paper, we assume that the un-
derlying tensor is low-tubal-rank. The tensor tubal rank is
defined through the tensor singular value decomposition (t-
SVD) which is (to the best of our knowledge) the only known
multi-linear extension of matrix SVD that has best rank-k ap-
proximation guarantee (like the Eckart-Young theorem) [8].
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As pointed out by [9, 10], the low-tubal-rank model is ideal for
capturing the “spatial-shifting” property which is ubiquitous
in real data arrays. As the most representative low-tubal-rank
model, the tubal nuclear norm (TNN) minimization based
method has shown superiority over traditional tensor low-rank
models in many tensor recovery problems like tensor com-
pletion [11–13], tensor robust principle component analysis
(TRPCA) [14], outlier robust tensor PCA (OR-TPCA) [15].

In this paper, we study robust low-tubal-rank tensor com-
pletion which aims to recover a sparsely corrupted low-tubal-
rank tensor from its partial noisy observations. To estimate
the underlying tensor, an estimator based on a slice weighed
variant of TNN named SwTNN is defined. Then, we estab-
lish non-asymptotic upper bounds on the estimation error and
prove that the upper bounds are minimax optimal up to a log
factor. We verify the sharpness of the proposed error bounds
through numerical experiments. Effectiveness of the estimator
is evaluated by experiments on real-world datasets.

2. PRELIMINARIES AND THE PROPOSED NORM

2.1. Notations

Main notations are listed in Table 1. Let [d] := {1, · · · , d},
∀d ∈ N+. Let a ∨ b = max{a, b} and a ∧ b = min{a, b}, ∀a, b ∈
R. For i ∈ [d], ei ∈ Rd denotes the standard vector basis whose
ith entry is 1 with the others 0. For (i, j, k) ∈ [d1]× [d2]× [d3],
the outer product ei ◦ ej ◦ ek denotes a standard tensor basis
in Rd1×d2×d3 . For a 3-way tensor, fft3(·) and ifft3(·) denotes
the fast Fourier transformation and the inverse fast Fourier
transformation along the third mode. For a set Ψ, |Ψ| denotes
its cardinality and Ψ⊥ its complement. Positive constants are
denoted by C, c, c0, etc. When the field and size of a tensor
are not shown explicitly, it is in Rd1×d2×d3 . The spectral norm
‖·‖ and nuclear norm ‖·‖∗ of a matrix are the maximum and
the sum of the singular values, respectively.

2.2. T-SVD and SwTNN

First, we define some concepts of t-SVD.
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Table 1: List of notations

Notations Descriptions Notations Descriptions
L∗ true low-rank tensor S∗ true “sparse” tensor
L̃ fft3(L) ‖L‖0

∑
ijk 1(Lijk 6= 0)

Lijk (i, j, k)th entry of L ‖L‖1
∑

ijk |Lijk|
L(i, j, :) (i, j)th tube of L ‖L‖F

√∑
ijk L2

ijk

L(:, j, :) jth lateral slice of L ‖L‖∞ maxijk |Lijk|
L(:, :, k) kth frontal slice of L ‖L‖slice,1

∑
j ‖L(:, j, :)‖F

Θs support of S∗ ‖L‖slice,0
∑

j 1(L(:, j, :) 6= 0)

Θ⊥s complement of Θs ‖L‖slice,∞ maxj ‖L(:, j, :)‖F
A(r, γ0, α) :=

{
(L,S) : rt(L) ≤ r, γ(S) ≤ γ0, (‖L‖∞ ∨ ‖S‖∞) ≤ α

}

Definition 1 (t-product [16]) Let T1 ∈ Rd1×d2×d3 and T2 ∈
Rd2×d4×d3 . Their t-product

T := T1 ∗ T2

is a tensor in Rd1×d4×d3 , whose (i, j)th tube T (i, j, :) =∑d2
k=1 T1(i, k, :) • T2(k, j, :), where • denotes the circular

convolution [8].

Based on the tensor transpose, f -diagonal tensor and or-
thogonal tensor [16], the t-SVD can be defined.

Definition 2 (t-SVD, Tensor tubal rank [16]) Any tensor T
has tensor singular value decomposition (t-SVD) as follows

T := U ∗Λ ∗ V>,

where U ∈ Rd1×d1×d3 and V ∈ Rd2×d2×d3 are orthogonal, Λ ∈
Rd1×d2×d3 is f -diagonal, (·)> denotes the tensor transpose.
The tensor tubal rank of T is defined as the number of non-zero
tubes of Λ in its t-SVD, i.e., rt(T ) :=

∑
i 1(Λ(i, i, :) 6= 0).

Motivated by the advantage of matrix weighted nuclear
norm [17] over the nuclear norm, we define the the slice-
weighted TNN (SwTNN).

Definition 3 (Slice-weighted TNN) The slice weighted tubal
nuclear norm (SwTNN) of T ∈ Rd1×d2×d3 is defined as

‖T ‖w? :=
∑d3

k=1

wk
d3
‖T̃ (:, :, k)‖∗, (1)

where T̃ := fft3(T ), and wk’s are positive parameters. If all
wk’s are equal 1, SwTNN reduces to the tubal nuclear norm
(TNN) [14].

The superiority of SwTNN over TNN lies in that wk’s in
Eq. (1) can provide flexibility in emphasizing the effect of
different frequency components T̃ (:, :, k) of the signal tensor.
The following properties of SwTNN are introduced:

Lemma 1 SwTNN is a valid norm with dual norm

‖T ‖∗w? := sup‖X‖w?≤1 〈T ,X〉 = maxk
{
‖T̃ (:, :, k)‖/wk

}
.

Lemma 2 Let T0 have t-SVD: T0 = U0 ∗Λ0 ∗ V0
>. The prox-

imal operator of SwTNN at T0 defined by Prox‖·‖w?
τ (T0) :=

argminT τ‖T ‖w? + 1
2
‖T − T0‖2F can be computed as

Prox‖·‖w?
τ (T0) = U0 ∗ ifft3(Λ̃) ∗ V0

>,

where Λ̃(:, :, k) = max{Λ̃0(:, :, k)− wkτ, 0}, for all k ∈ [d3].

3. ROBUST TENSOR COMPLETION

3.1. The Observation Model

Let L∗ denote the true “signal” tensor with low tubal rank,
i.e., rt(L∗)� d1 ∧ d2. Let S∗ denote the “corruption” tensor
with support Θs. We suppose S∗ belongs to one of the two
settings: the TRPCA [14] setting where S∗ carries element
sparse errors (i.e. ‖S∗‖0 � d1d2d3), or the OR-TPCA[15]
setting where S∗ models slice sparse sample outliers (i.e.,
‖S∗‖slice,0 � d2).

Suppose we observe N scalars yi from the model

yi = 〈L∗ + S∗,Xi〉+ ξi, ∀i ∈ [N ], (2)

where ξi
i.i.d.∼ N (0, σ2) with known σ and Xi ∈ Rd1×d2×d3 are

the design tensors satisfying the following assumptions:

Assumption 1 The following assumptions are made:

(I) First, all corrupted positions are observed, i.e., the sup-
port of S∗ is totally observed1. Or formally, there exist-
s an unknown subset2 X s ⊂ {Xi}Ni=1 sampled from
any distribution ΠΘs on the set XΘs :=

{
ei ◦ ej ◦

ek,∀(i, j, k) ∈ Θs

}
, such that each element in XΘs is

sampled at least once.

(II) Second, all non-corrupted positions are sampled uni-
formly with replacement. Each element of the set X⊥s :=

{Xi}Ni=1\X s is sampled i.i.d. from uniform distribution
ΠΘ⊥s

on the set XΘ⊥s
:=
{
ei ◦ ej ◦ ek, ∀(i, j, k) ∈ Θ⊥s

}
.

According to the observation model (2) and Assumption
1, the true tensor L∗ is firstly corrupted by sparse S∗ and
then sampled with additive Gaussian noise ξi’s. The corrupted
positions of L∗ are assumed to be fully observed with design
tensors X s ⊂ {Xi}Ni=1, and the remaining non-corrupted po-
sitions are sampled uniformly through design tensors X⊥s :=

{Xi}Ni=1\X s.

3.2. Problem Formulation

Given partial noisy observations {(Xi, yi)}Ni=1 from observa-
tion model (2), the goal of robust tensor completion is to
recover L∗ and S∗. The problem can be regarded as a robust
variant of tensor completion in [16], a noisy partial variant of
TRPCA [14] and OR-TPCA [15], and a noisy variant of [5].

Exploiting the low-tubal-rankness of L∗ and the sparsity
of S∗, we consider the following problem:

min
L,S

l(L,S) + λιrt(L) + λsR0(S), (3)

where λι, λs ≥ 0 are regularization parameters, l(L,S) =
1
2

∑N
i=1

(
yi − 〈L+ S,Xi〉

)2 is the data fidelity term and R0(S)

1This assumption is necessary, because it is impossible to recover the
unobserved entries of S∗ [5].

2With a slight abuse of notation, the concept ‘set’ in this section allows
multiplicity of elements.
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is ‖·‖0 or ‖·‖slice,0 when S∗ represents element sparse errors or
slice sparse sample outliers.

Due to the non-convexity of tubal rank rt(·) and sparsity
R0(·), Problem (3) is NP hard. We use convex relaxations
of rt(·) and R0(·), i.e., ‖·‖w? and R(·) ∈ {‖·‖1, ‖·‖slice,1}, to re-
place them, respectively. Specifically, we define the following
estimator

(L̂, Ŝ) := argmin
‖L‖∞≤α
‖S‖∞≤α

l(L,S) + λι‖L‖w? + λsR(S),
(4)

where α > 0 is an upper estimate of ‖L∗‖∞ and ‖S∗‖∞. The
additional constraints ‖L‖∞ ≤ α and ‖S‖∞ ≤ α are intro-
duced to exclude the “spiky” tensors, which is important in
controlling the separability of L∗ and S∗. Such “non-spiky”
constraints are also imposed in previous literatures [12, 18, 19],
playing a key role in bounding the estimation error3.

4. STATISTICAL PERFORMANCE

Let NS = |X s| and NL = |X⊥s | denote the number of cor-
rupted and uncorrupted observations, respectively. Let γ(S∗)
denote the corruption ratio which equals ‖S∗‖0/(d1d2d3) or
‖S∗‖slice,0/d2 when S∗ represents element sparse errors or slice
sparse sample outliers, respectively. Without loss of gener-
ality, assume d1 ≥ d2. For simplicity, let d̃ = (d1 + d2)d3,
D = d1d2d3, wmax = maxk wk, wmin = mink wk, ∆2

ι,s =

‖L̂ − L∗‖2F + ‖Ŝ − S∗‖2F . We establish the following upper
bounds on the estimation error.

Theorem 1 (Upper bounds on the estimation error) Let
NL ≥ c1d1d3 log d̃ log2 d2. Choose parameters λι = c2(σ ∨
α)w−1

min

√
N log(d̃)/d2, and λs = c3(σ ∨ α)logd̃ or c4(σ ∨

α)
√
N log d̃/d2 for R(·) being ‖·‖1 or ‖·‖slice,1 in Problem (4),

respectively. Then it holds with probability at least 1− c5/d̃:

∆2
ι,s/D ≤ C(EL + ES), (5)

where EL = (σ ∨ α)2
(
wmaxw

−1
minrt(L∗)d1d3 log d̃

)
/NL and

ES = NS log d̃/NL + α2γ(S∗).

The proof follows [12] and [18], and is omitted due to
space limitation. According to Theorem 1, if σ, α and wk’s are
fixed and each of the corrupted positions are observed exactly
once, then the upper bound would (with high probability) scale
like

O
(
rt(L∗) ·

d1d3 log d̃

NL
+ γ(S∗) ·

(D log d̃

NL
+ 1

))
, (6)

where the first error term accounts for tensor completion and
the second term stems from corruption.

3The constraint is a compromise that L∗ is not assumed to satisfy the
stringent tensor coherent condition (TIC), which essentially ensures the sepa-
rability of L∗ and S∗ [5, 14].

Remark 1 (Connection with previous works) The proposed
bounds consist with previous works:

(I) If γ(S∗) = 0, i.e., the corruption S∗ vanishes, we have
‖L̂ − L∗‖2F/D = O(rt(L∗)d1d3 log d̃/N), which is con-
sistent with the error bound for noisy low-tubal-rank
tensor completion in [20, 21].

(II) According to Eq. (6), rt(L∗) can take the orderO(d2/ log d̃)

and γ(S∗) can be O(1) for approximate estimation with
small error. It is consistent (up to a logarithm fac-
tor) with the results for exact completion in [5] which
ensures rt(L∗) = O(d2/ log2 d̃) and γ(S∗) = O(1).

(III) When d3 = 1, the error bounds reduce to results for the
robust matrix completion [18].

Remark 2 (No exact recovery guarantee) According to
Theorem 1, when σ = 0 and γ(S∗) = 0, i.e., in the
noiseless case, the estimation error is upper bounded by
αrt(L∗)d1d3 log d̃/N which is not zero. Thus, no exact recov-
ery is guaranteed. It can be seen as a trade-off that we do
not assume the low-tubal-rank tensor L∗ to satisfy the tensor
incoherent conditions [5, 14, 15] which essentially ensures
the separability between L∗ and any sparse tensors.

To explore the optimality of the proposed upper bounds,
we establish the minimax lower bounds on the estimation error
when (L∗,S∗) belongs to the tensor class A(r, γ0, α) (see defi-
nition in Table 1). Define φ(N, r, γ0) := (σ∧α)2

(
N−1
L (rd1d3 +

N −NL) + γ0

)
. We have the following theorem.

Theorem 2 (Minimax lower bounds) Assume that d1, d2 ≥
2, γ0 ≤ 1/2, rd1d3 ≤ NL and there exists a constant τ > 0

such that NS ≤ τrd̃. Then, there exist absolute constants
β ∈ (0, 1) and c > 0, such that

inf
(L̂,Ŝ)

sup
(L∗,S∗)
∈A(r,γ0,α)

P(L∗,S∗)

(∆2
ι,s

D
≥ cφ(N, r, γ0)

)
≥ β. (7)

The lower bounds indicate that the upper bounds in Theo-
rem 1 are minimax optimal (up to a logarithm factor). In other
words, no estimator can achieve better estimation performance
than the proposed estimator (up to a logarithm factor) in the
case where L∗ and S∗ are in A(r, γ0, α). The sharpness of
the upper bound is verified through simulations in Section
5.1. Note that in the no-corruption case, the upper bound
will reduce to rd1d3/NL, indicating that the order of sample
complexity NL should not be lower than O(rd1d3) to obtain
an estimation with small error. The order can not be further
tightened for general low-tubal-rank tensors, since the degree
of freedom of a general 3-way tensor T ∈ Rd1×d2×d3 with
tubal rank r is at most rd3(d1 + d2 − r) [20, 22].

3434



(a) (b)

(c) (d)

Fig. 1: Error vs r = rt(L∗), γ, NL and N−1
L : (a) Error vs

r with γ = 0.01 and NL = 0.4(1 − γ)D; (b) Error vs γ with
r = 9 and NL/(D−NS) = 0.5; (c) Error vs NL with r = 3 and
γ = 0.01; (d) Error vs N−1

L with r = 3 and γ = 0.01.

5. EXPERIMENTS

5.1. Sharpness of the Proposed Upper Bound

We examine whether the upper bounds in Theorem 1 can
predict the scaling behavior of the error. According to Eq. (6),
if the upper bound is sharp, then the error ∆2

ι,s/D should
have the same scaling behavior: approximately linear in the
tubal rank r, the corruption ratio γ and the reciprocal of non-
corrpted observation number N−1

L . We will check whether the
phenomenon occurs using control variable method.

First, we generate the signal tensor L∗ with tubal rank r
via L∗ = P ∗ Q, where P ∈ Rd1×r×d3 and Q ∈ Rr×d2×d3 are
sampled from i.i.d. standard Gaussian. L∗ is then normalized
such that ‖L∗‖∞ = 1. Second, to generate S∗, we first form S0

with i.i.d. uniform distribution Uni(0, 1) and then uniformly
select γD elements or γd2 lateral slices when S∗ represents
element sparse errors or slice sparse sample outliers, respec-
tively. Thus the number of corrupted elements NS = γD.
Third, we uniformly select NL elements from the uncorrupt-
ed positions of (L∗ + S∗). Finally, the noise ξi are sampled
from i.i.d. Gaussian N (0, σ2) with σ = 0.1‖L∗‖F/

√
D. We

consider f -diagonal tensors with d1 = d2 = d = 100,
d3 = 30 and tubal rank r ∈ {3, 6, 9, 12, 15}. We choose
corruption ratio γ ∈ {0.01 : 0.01 : 0.1} and observation ratio
NL/(D − NS) ∈ {0.4 : 0.1 : 0.9}. We solve Problem (4) via
ADMM [23]. We set equal weights w1 = · · · = wd3 = 1. In
each setting, the error averaged over 30 runs is reported.

When S∗ represents element sparse errors, Fig. 1 shows the
results of the error versus r, γ, NL and N−1

L by keeping other
variables fixed. From sub-figures (a), (b) and (d) in Fig. 1, we
can see that the error has approximately linear scaling behavior
with respect to r, γ and N−1

L . So, the experimental results are

consistent with our expectation in the element sparse error case.
Similar phenomena have be found in the cases of slice sparse
sample outliers. Since the simulation results are consistent
with our expectation, it can be verified that the upper bounds
can predict the scaling behavior of the estimation error.

5.2. Effectiveness of the Proposed Estimator

Effectiveness of the SwTNN-based estimator is shown via
comparison with other nuclear norm based estimators, i.e.,
the tensor nuclear norm (SNN) [3], the squared nuclear norm
(SquareNN)[24], the tubal nuclear norm (TNN) [16] and the
matrix nuclear norm (NN) [25]. Estimators based on the
aforementioned norms are formulated by replacing SwTNN in
Problem (4), and the corresponding optimization problems are
solved by ADMM via our own implementation in Matlab.

(a) (ρ, γ) = (0.5, 0.1) (b) (ρ, γ) = (0.8, 0.2)

Fig. 2: PSNR values for two settings of (ρ, γ) with Gaussian
noise level 0.05 on YUV videos.

Given a signal tensor L∗, we consider two settings of
the observation ratio ρ and the corruption ratio γ: (ρ, γ) ∈
{(0.5, 0.1), (0.8, 0.2)} with Gaussian noise level 0.05. All
the involved parameters are manually tuned for better perfor-
mances unless they have suggested values. The PSNR [22]
is used to evaluate recovery quality. For each setting, the
experiments are repeated 10 times and the averaged PSNR
is reported. We test on six widely used YUV videos4: coast-
guard_qcif, foreman_qcif, mobile_qcif, stefan_cif, bus_cif and
flower_cif. Due to the computational limitation, we use the
first 32 frames of Y components in each video. That results
in three tensors sized 144× 176× 32 and three tensors sized
288 × 352 × 32. The PSNR values are reported in Fig. 2. It
can be seen that the proposed SwTNN-based estimator has
better performances.

6. CONCLUSION

An estimator based on a newly defined SwTNN is proposed for
robust low-tubal-rank tensor completion. Non-asymptotic up-
per bounds on the estimation error are established and further
proved to be minimax optimal up to a log factor. Experiments
on both synthetic and real datasets demonstrate the sharpness
of the proposed upper bounds and the effectiveness of the
proposed estimator, respectively.

4https://sites.google.com/site/subudhibadri/
fewhelpfuldownloads.
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