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ABSTRACT

Due to the superiority in exploiting the ubiquitous “spatial-
shifting” property in modern multi-way data, the recently pro-
posed low-tubal-rank model has been successfully applied for
tensor recovery in signal processing and computer vision. In
this paper, we define the generalized tensor Dantzig selector
to recover a low-tubal-rank tensor from noisy linear measure-
ments. Algorithmically, we develop an efficient algorithm
based on the ADMM framework. Statistically, we establish
non-asymptotic upper bounds on the estimation error for the
problems of tensor completion and compressive sensing. Nu-
merical experiments illustrate that our bounds can predict the
scaling behavior of the estimation error. Experiments on real-
word datasets show the effectiveness of the proposed model.

Index Terms— Dantzig selector, tensor completion, com-
pressive sensing, tubal nuclear norm, statistical performance

1. INTRODUCTION

As a multi-linear extension of vector and matrix, tensor has
intrinsic advantages in modeling multi-way correlations. In
many applications, most variations of the data tensor can be
dominated by a relatively small number of intrinsic factors,
which can be well modeled by tensor low-rankness [1]. D-
ifferent from the uniquely defined matrix rank, a tensor has
multiple definitions of rank function. The most popular tensor
ranks are the CP rank [2] and the Tucker rank [3]. Recently,
the tensor tubal rank [4], induced by the tensor singular value
decomposition (t-SVD) [5], was proposed as a new tensor com-
plexity measure and has been applied in may tensor recovery
tasks like image/video inpainting/de-noising [4, 6, 7].

The problem of tensor recovery from a few noisy linear
measurements finds many applications in signal processing [8–
11]. In general, recovering a tensor from incomplete measure-
ments is an ill-posed problem, especially when the quantity
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of information carried by the observations does not signifi-
cantly exceed the degree of freedom (DoF) [12]. To make
the problem well-posed, we assume the tubal rank r∗ of the
underlying tensor L∗ ∈ Rd1×d2×d3 is low. Then the degree
of freedom in L∗ is at most r∗(d1 + d2 − r∗)d3 [13], which
is significantly smaller than the entry number d1d2d3. In the
noiseless setting, by tensor tubal nuclear norm (TNN) min-
imization, it is proved that O(r∗(d1 + d2 − r∗)d3) Gaussian
measurements are sufficient for exact recovery of L∗, and
O(r∗max{d1, d2}d3 log2(d1d3 + d2d3)) observations sufficient
for exact tensor completion provided L∗ satisfies the tensor
coherence condition (TIC) [8]. In the noisy setting, one needs
O(r∗max{d1, d2}d3 log(d1d3 +d2d3)) observations for approx-
imate tensor completion via an iterative singular tube thresh-
olding algorithm (ISTT) [14]. In [8], an l2-norm constrained
TNN minimization model (“l2-Con” for short) is also defined
for tensor compressive sensing.

In compressive sensing, the Dantzig Selector [15] is an
alternative to the l2-norm constrained model and the regular-
ized approaches (like Lasso) for sparse recovery. Recently, the
generalized Dantzig selector has attracted much attention in
low-rank matrix recovery [16, 17]. In [17], the generalized
matrix Dantzig selector has shown a typically sharper upper
bound on the estimation error than the l2-norm constrained
norm minimizer.

In this paper, we first define the generalized tensor Dantzig
selector for low-tubal-rank tensor recovery. Then, an algo-
rithm based on the alternating direction method of multipliers
(ADMM) is presented. Further, non-asymptotic upper bounds
on the estimation error are established for two typical tensor
recovery problems, i.e., tensor completion and tensor compres-
sive sensing. Synthetic and real data experiments verify the
sharpness of the proposed upper bounds and the effectiveness
of the generalized tensor Dantzig selector.

2. NOTATIONS AND PRELIMINARIES

First, the main notations are listed in Table 1. When the field
and size of a tensor are not shown explicitly, it is in Rd1×d2×d3 .
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Let [d] := {1, · · · , d}, ∀d ∈ N+. Let a ∨ b = max{a, b} and
a ∧ b = min{a, b}, ∀a, b ∈ R. For i ∈ [d], ei ∈ Rd denotes the
standard vector basis whose ith entry is 1 with the others 0.
For (i, j, k) ∈ [d1] × [d2] × [d3], the outer product ei ◦ ej ◦ ek
denotes a standard tensor basis in Rd1×d2×d3 . The matrix
nuclear norm ‖·‖∗ and spectral norm ‖·‖ are the sum and
maximum of the singular values, respectively. For a 3-way
tensor, fft3(·) denotes the fast Fourier transformation along
the third mode. Positive constants are denoted by C, c, c0, etc.
Abbreviation w.h.p. is short for “with high probability”. The
identity operator is denoted by I. Let SD−1 be the unit sphere.
For simplicity, let d̃ = (d1 + d2)d3 and D = d1d2d3. We also
assume d1 ≥ d2 without loss of generality.

Table 1: Some notations

Notation Descriptions Notation Descriptions
L∗ the true tensor L̂ proposed estimator
∆ L∗ − L̂ ‖T ‖sp tensor spectral norm
T̃ fft3(T ) ‖T ‖? tubal nuclear norm
Tijk (i, j, k)th entry of T ‖T ‖F

√∑
ijk T 2

ijk

T (i, j, :) (i, j)th tube of T ‖T ‖∞ maxijk |Tijk|
T (:, :, k) kth frontal slice of T 〈A,B〉

∑
ijk AijkBijk

T A(L∗) cone{T
∣∣‖L∗ + T ‖? ≤ ‖L∗‖?} EA(L∗) T A(L∗) ∩ SD−1

C(r) :=
{
T
∣∣‖T ‖∞ = 1,

‖T ‖?
‖T ‖F

≤
√
r,
‖T ‖2F

D ≥ 8
√

log d̃/(N log(6/5))
}

Then, some concepts related to t-SVD will be defined.

Definition 1 (t-product [11]) Let T1 ∈ Rd1×d2×d3 and T2 ∈
Rd2×d4×d3 . Their t-product T := T1 ∗ T2 is a tensor in
Rd1×d4×d3 , whose (i, j)th tube T (i, j, :) =

∑d2
k=1 T1(i, k, :

) • T2(k, j, :), where • denotes the circular convolution [5].

Definition 2 (t-SVD, tubal rank [11]) Any T ∈ Rd1×d2×d3
has tensor singular value decomposition (t-SVD) T := U ∗ S ∗ V>,
where U ∈ Rd1×d1×d3 and V ∈ Rd2×d2×d3 are orthogo-
nal, S ∈ Rd1×d2×d3 is f -diagonal, (·)> denotes the ten-
sor transpose[5]. The tensor tubal rank of T is defined
as the number of non-zero tubes of S in its t-SVD, i.e.,
rtubal(T ) :=

∑
i 1(S(i, i, :) 6= 0).

Definition 3 (TNN, tensor spectral norm [7]) Letting T̃ :=
fft3(T ), the tubal nuclear norm (TNN) and the tensor spectral
norm of T ∈ Rd1×d2×d3 are respectively defined as

‖T ‖? :=
∑d3

k=1

‖T̃ (:, :, k)‖∗
d3

, ‖T ‖sp := max
k
‖T̃ (:, :, k)‖. (1)

TNN and tensor spectral norm are dual norms [8]. TNN has
been successfully utilized in tensor recovery problems like
tensor completion [11] and tensor robust PCA[7].

3. GENERALIZED TENSOR DANTZIG SELECTOR

The true tensor L∗ is assumed to be low tubal rank, i.e., r∗ =

rtubal(L∗)� d1 ∧ d2. Suppose one observes N � D scalars

yi = 〈L∗,Xi〉+ ξi, ∀i ∈ [N ], (2)

where Xi’s are known random design tensors, and ξi’s are
i.i.d. zero-mean Gaussian noise with known variance σ2. Let
y = (y1, · · · , yN )> and ξ = (ξ1, · · · , ξN )>. Define the design
operator X(T ) := (〈T ,X1〉 , · · · , 〈T ,XN 〉)> ∈ RN with adjoint
operator X∗(z) :=

∑N
i=1 ziXi, ∀z ∈ RN . Thus, the observation

model (2) can be rewritten as y = X(L∗) + ξ. With different
design tensors, we consider two classical examples:

Eg.1 Tensor completion. In tensor completion, the design
tensors {Xi} are i.i.d. random tensor bases drawn from
uniform distribution on the set

{
ei ◦ ej ◦ ek, ∀(i, j, k) ∈

[d1]× [d2]× [d3]
}

, which serves as an orthonormal basis
in the space of d1 × d2 × d3 tensors.

Eg.2 Tensor compressive sensing. When X is a random Gaus-
sian design, Model (2) is the tensor compressive sensing
model with Gaussian measurements [12]. X is named a
random Gaussian design when Xi’s are random tensors
with i.i.d. standard Gaussian entries[18].

To recover the true tensor L∗ from noisy observations y,
we define the generalized tensor Dantzig selector as follows:

L̂ ∈ argmin
L
‖L‖? s.t. ‖X∗(y − X(L))‖sp ≤ λ, (3)

where λ is a parameter. Model (3) is a generalization of the
Dantzig selector [15] to the tensor case.

3.1. An ADMM-based Algorithm

The ADMM framework [19] is applied to solve the proposed
model. Let Cλ := {T

∣∣‖T ‖sp ≤ λ}. Adding auxiliary variables
yields an equivalent formulation to Problem (3):

min
L,K,E

‖L‖?

s.t. K = L, E + X∗X(K) = X∗(y), E ∈ Cλ.
(4)

To solve Problem (4), an ADMM-based algorithm is de-
scribed in Algorithm 1. Since Algorithm 1 is an instance of
ADMM, its convergence behavior exactly follows the conver-
gence analysis in [19].

We analyze the computational complexity as follows. Up-
dating L and E involves the singular tube thresholding operator
S
‖·‖?
τ (·) [14] which costs O

(
D(d1 ∧ d2 + log d3)

)
; By precom-

puting (I+X∗XX∗X)−1 and X∗X which costsO(D3+ND2), the
cost of updating K is O(D2); Updating Yk (k ≤ 2) costs O(D2).
Supposing the iteration number is T , the overall computation-
al complexity will be O

(
D3 + TD2 + TD(d1 ∧ d2 + log d3)

)
,

which is very expensive for large tensors. In some special
cases (like tensor completion) where 〈Xi,L〉 operates on an
element of L, (I + X∗XX∗X)−1 and X∗X can be computed in
O(D). Hence, the total complexity of Algorithm 1 will drop
to O

(
TD(min{d1, d2}+ log d3)

)
.
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Algorithm 1: ADMM for Problem (4)
Input: {Xi}i,y, ρ, ε, Tmax.
Output: L̂ = Lt+1.
1: L0 = K0 = E0 = Y0

1 = Y0
2 = 0;

2: for t = 0 to Tmax − 1 do
3: Update Lt+1 = S

‖·‖?
1/ρ

(Kt+1 + Yt+1
1 /ρ),

and Et+1 = E0 −S
‖·‖?
λ (E0), where

E0 = X∗(y)− X∗X(Kt+1)− Yt+1
2 /ρ.

4: Update Kt+1 = (I+ X∗XX∗X)−1K̃, where
K0 = X∗X

(
X∗(y)− Et+1 − Yt+1

2 /ρ
)
+ Lt+1 − Yt+1

1 /ρ.
5: Check stopping condition: ‖Kt+1 − Lt+1‖∞ ≤ ε,

‖Et+1 + X∗X(Kt+1)− X∗(y)‖∞ ≤ ε, and
‖T t+1 − T t‖∞ ≤ ε, ∀T ∈ {L,K, E}.

6: Update Yt+1
1 = Yt1 + ρ(Kt+1 − Lt+1) and

Yt+1
2 = Yt2 + ρ

(
Et+1 + X∗X(Kt+1)− X∗(y)

)
.

7: end for

3.2. Statistical Performance

We analyze statistical performance of the generalized tensor
Dantzig selector by establishing non-asymptotic upper bound-
s on the estimation error for tensor completion and tensor
compressive sensing. The proofs are omitted due to page
limitation.

We begin with a lemma on the error tensor ∆ := L̂ − L∗.

Lemma 1 Let T A(L∗) := cone{T
∣∣‖L∗ + T ‖? ≤ ‖L∗‖?} be

the tangent cone of TNN at L∗. For any tensor ∆ ∈ T A(L∗),
the restricted norm compatibility inequality holds:

‖∆‖? ≤ 2
√

2r∗‖∆‖F. (5)

3.2.1. Tensor Completion

In tensor completion, we also assume the true tensor L∗ has
l∞-norm smaller than a constant α to exclude the spiky tensors
[14]. Further, we consider a slightly modified estimator

L̂ ∈ argmin
‖L‖∞≤α

‖L‖? s.t. ‖X∗(y − X(L))‖sp ≤ λ. (6)

We first give two key lemmas.

Lemma 2 In tensor completion, if the sample size N ≥ d1d3,
then w.h.p. the quantity ‖X∗(ξ)‖sp is concentrated around its

mean bounded as E[‖X∗(ξ)‖sp] ≤ c0
√
N log d̃/d2.

Lemma 3 In tensor completion, it holds w.h.p.

‖X(T )‖2F ≥ N(2D)−1‖T ‖2F − c1rd1d3 log d̃,

for all T ∈ C(r) (see the definition in Table 1).

Then, the estimation error is upper bounded as follows.

Theorem 1 In tensor completion, if the sample size N ≥
c2rd1d3 log d̃ and parameter λ ≥ c3

√
N log d̃/d2, then any

solution of Problem (6) satisfies w.h.p.

‖∆‖2F
D
≤ C1 max

{
(σ2 ∨ α2)

r∗d1d3 log d̃

N
, α2

√
log d̃

N

}
.

Theorem 1 guarantees that the per-entry estimation error
‖∆‖2F/D ≤ O

(
r∗d1d3 log d̃/N

)
, with sample complexity N =

Ω(r∗d1d3 log d̃). The sample complexity is near optimal (up to
a log factor) since the DoF of L∗ is at most r∗(d1 +d2−r∗)d3.
The error bound can also be proved near optimal in minimax
sense using a similar argument with Theorem 6 in [14, 20].
The error bound and the sample complexity are in consistence
with the results of ISTT [14] which considers the element-
wise Bernoulli sampling. When d3 = 1, the error bound for
tensor completion degenerates to a matrix completion bound
consistent with [21]. As a trade-off of relaxing the strict TIC
[8, 11] to the mild l∞-norm constraint, Theorem 1 cannot
guarantee exact tensor completion in the noiseless setting (i.e.,
σ = 0) just like [22].

3.2.2. Tensor Compressive Sensing

For tensor compressive sensing from noisy Gaussian measure-
ments, we first come up with two lemmas:

Lemma 4 The quantity ‖X∗(ξ)‖sp is concentrated around its
mean bounded as E[‖X∗(ξ)‖sp] ≤ σ

√
d3N(

√
d1 +

√
d2), w.h.p.

Lemma 5 If X is a random Gaussian design, then for any
∆ ∈ EA(L∗) := T A(L∗) ∩ SD−1, it holds w.h.p.

‖X(∆)‖22 ≥ N − c′0
√
Nr∗(d1 + d2 − r∗)d3.

Then, a non-asymptotic error bound is established.

Theorem 2 In random Gaussian design, if the sample size
N ≥ c′1r

∗(d1 + d2 − r∗) and parameter λ ≥ c′2σ
√
d3N(

√
d1 +√

d2), then it holds for any solution L̂ of Problem (3) w.h.p.

‖∆‖2F ≤ C2σ
2 r
∗(d1 + d2)d3

N
.

Theorem 2 demonstrates that whenever the sample size
N = Ω(r∗(d1 + d2 − r∗)d3), we have ‖∆‖2F ≤ O

(
r∗(d1 +

d2)d3N
−1
)
. In the noiseless setting (i.e., σ = 0), Theorem 2

guarantees exact recovery with O(r∗(d1 + d2 − r∗)) samples,
which is order optimal to the DoF of L∗. When d3 = 1, the
problem degenerates to matrix sensing and the error bound
O(r∗(d1 + d2)N−1) is consistent with the bounds in [23]. The
sample complexity is consistent with the result of the l2-norm
constrained TNN minimization (l2-Con) defined by Eq. (7)
in [8]. Comparison with l2-Con on synthetic datasets (shown
in Fig. 2.c) demonstrates that the proposed model can obtain
solutions of higher precision.

4. EXPERIMENTS

We first verify correctness of Theorems 1 and 2. The true
tensors L∗ ∈ Rd1×d2×d3 with tubal rank r∗ are generated by
L∗ = P ∗ Q, where P ∈ Rd1×r

∗×d3 and Q ∈ Rr
∗×d2×d3 are

i.i.d. sampled from N (0, 1). We consider the tensors with
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(a) (b) (c)

Fig. 1: Tensor completion. (a): error vs sample size N with
r∗ = dlog1/2 de; (b): error versus rescaled sample size N0 =
N/(r∗d1d3 log d̃); (c): comparison with ISTT [13].

square frontal slices (i.e. d1 = d2 = d) for simplicity. For each
setting, we run T = 20 trials and report the estimation error.
Tensor Completion. For L∗ with unit F-norm, we add i.i.d.
Gaussian N (0, σ2) noise with σ = 0.1/

√
D to keep a constant

signal-to-noise ratio (SNR). By choosing d1 = d2 = d ∈
{40, 60, 80, 100}, d3 ∈ {20, 30, 40} and r∗ = dlog1/2 de, we
consider 12 different problem sizes. In this constant SNR
setting, the upper bound proposed in Theorem 1 is shown to
scale like O(r∗d1d3 log d̃/N) w.h.p. (following [13]). Thus,
if the bound is sharp, it is expected that the estimation error
would have the same scaling behavior. Equivalently, if the
estimation error is plotted versus the rescaled sample size
defined as N0 := N/r∗d1d3 log d̃, then it is expected that the
curves of different tensor sizes should be well aligned. The
results are shown in Fig. 1. In particular, plots of the error
against the sample size N are shown in Fig. 1.a with d ∈
{40, 60, 80, 100} and d3 = 20, reflecting the intuition that the
error decreases as N increases. Plots of the error versus the
rescaled sample size N0 are shown in Fig. 1.b. Since for other
problem sizes, similar scaling behaviors are also be observed,
the results are omitted. As expected, the error curves align
well in Fig. 1, which validates the sharpness of the proposed
upper bound in Theorem 1. The proposed estimator (Dantzig)
is also compared with ISTT [13] in Fig. 1.c. We can see the
proposed estimator achieves higher precision than ISTT.
Tensor Compressive Sensing. We follow the procedure for
matrix sensing in [23]. Before sensing L∗ with random Gaus-
sian design X, we first normalize it such that ‖L∗‖F = 1. Then,
the noise variables are generated from i.i.d. Gaussian N (0, σ2)

with σ = 0.1. By choosing d1 = d2 = d ∈ {20, 25, 30},
d3 ∈ {5, 10} and the tubal rank r∗ = dlog1/2 de, we consid-
er 6 different problem sizes. Fig. 2 summarizes the results.
Particularly, Fig. 2.a plots the estimation error versus the raw
sample size N , which shows the consistency that estimation
error decreases when sample size increases. Fig. 2.b plots the
error against the rescaled sample size N0 = N/(r∗(d1 + d2)d3).
It is clearly shown in Fig. 2.b that the errors are well aligned,
validating the sharpness of the proposed error bounds. We also
compare the proposed estimator (Dantzig) with l2-Con [8]. For
tensors L∗ of size 20× 20× 5 with tubal rank r∗ = 1, we vary
the noise level σ ∈ {0.02, 0.1, 0.18} along with the observation

ratio N/D ∈ 0.02 : 0.02 : 0.4. The averaged estimation error
are shown in log scale in Fig. 2.c, showing that the proposed
estimator is more accurate than l2-Con.

(a) (b) (c)

Fig. 2: Tensor compressive sensing. (a): error versus sample
sizeN with r∗ = dlog1/2 de. (b): error versus rescaled sample
size N0 = N/(r∗(d1 + d2)d3). (c): comparison with l2-Con
[8] by varying σ ∈ {0.02, 0.1, 0.18} and N/D ∈ 0.02 : 0.02 :
0.4 for L∗ ∈ R20×20×5 of tubal rank r∗ = 1.

Point Cloud Data Inpainting. We conduct inpainting exper-
iments on a sequence of point cloud data acquired from a
Velodyne HDL-64E LiDAR 1 [24]. The distance and inten-
sity data are formated into two tensors in R64×436×80. The
proposed estimator (Dantzig) is compared with four nuclear
norm based tensor completion models including FaLRTC2

[25], SquareNN3 [12], TNN4 [11] and ISTT [13]. The quality
of inpainting is measured by the peak signal-to-noise ratio (P-
SNR). Given T ∈ Rd1×d2×d3 , we let the sampling ratio p vary
from 0.1 to 0.7 and the noise follows i.i.d. Gaussian N (0, σ2)
where σ = 0.2‖T ‖F/

√
D. For quantitative comparison, the

PSNR values are shown in Fig. 3. We can see that the proposed
estimator outperform other nuclear norm based competitors.

(a) distance data (b) intensity data

Fig. 3: Results of point cloud data inpainting.

5. CONCLUSION

The generalized tensor Dantzig selector is defined for low-
tubal-rank tensor recovery. Then, an ADMM-based algorithm
is developed. Further, upper bounds on the estimation error
are established for tensor completion and compressive sensing.
Synthetic experiments verify the theory. The effectiveness of
estimator is demonstrated on real datasets.

1Frame Nos. 65-144 of the Scenario B and Scenario B-additional datasets:
http://www.mrt.kit.edu/z/publ/download/velodynetracking/dataset.html

2http://www.cs.rochester.edu/u/jliu/publications.html
3https://sites.google.com/site/mucun1988/publi
4https://github.com/jamiezeminzhang/
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