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Abstract—The rapid development of information technology is
making it possible to collect massive amounts of multidimensional,
multimodal data with high dimensionality in a diverse set of science
and engineering disciplines. Although there has been a lot of recent
work in the area of unsupervised tensor learning, extensions to
supervised learning, feature extraction and classification are still
limited. Moreover, most of the existing supervised tensor learning
approaches are based on the Tucker model. However, this model
has some limitations for large tensors including high memory and
execution time costs. In this paper, we introduce a supervised
learning approach for tensor classification based on the tensor-
train model. In particular, we introduce two computationally
efficient implementations of tensor-train discriminant analysis (TT-
DA). The proposed approaches are evaluated on image classifi-
cation tasks with respect to computation time, storage cost and
classification accuracy.

Index terms— Tensor-Train, Tensor Networks, Multidimen-
sional Discriminant Analysis, Supervised Tensor-Train.

I. INTRODUCTION

Statistical learning, pattern recognition and data mining with
high dimensional data pose new challenges. Most of the state-
of-the-art supervised learning algorithms assume that data
instances or training samples are represented as vectors. How-
ever, in many real-world applications such as computer vision,
data instances are more naturally represented as second-order
or higher-order tensors, where the order of a tensor corresponds
to the number of modes. Conventional supervised learning
approaches applied to vectorized tensor samples are inadequate
when dealing with massive multidimensional data as they
cannot capture the cross-couplings across the different modes
and suffer from increasing storage and computational costs
[1], [2], [3]. Therefore, there is a growing need for supervised
learning methods that can learn discriminant subspaces from
tensor data while preserving its inherent multi-modal structure.

In recent years, supervised and unsupervised tensor subspace
learning approaches based on the Tucker model have been
proposed [4], [5], [6], [7], [8]. Some of these approaches
such as Multilinear Principal Component Analysis (MPCA) [8]
is successful at dimensionality reduction but not necessarily
suitable for discriminative feature extraction. Others such as
Multilinear Discriminant Analysis (MDA) [4] are not practical
with increasing number of modes, due to exponential increase
in the storage cost of Tucker model [9].

Tensor-Train (TT) model, on the other hand, provides better
compression than Tucker models as it expresses a given high-
dimensional tensor as the product of many low rank, 3-mode
tensors [1]. TT model has been extended for various tasks such
as PCA [10], manifold learning [11] and neural networks [12].
Although TT has been extended to various unsupervised learn-
ing tasks, it has not been fully explored in supervised learning
settings. In this paper, we propose a TT based discriminant
subspace learning framework to take advantage of the storage

efficiency of this model. We also propose a method to reduce
the complexity of finding a TT subspace by taking advantage
of the flexibility of the TT structure.

This paper differs from the current work in two key ways.
First, LDA is generalized to tensor data for the first time using
the TT model. Thus, the efficiency of TT in a discriminant
subspace learning setting is explored. Second, we improve the
computational efficiency of the current TT subspace learning
methods by introducing two algorithms that take advantage of
the flexible TT structure.

The rest of the paper is organized as follows. In Section
II, we provide background on TT decomposition and LDA.
In Section III, we generalize TT for discriminant analysis and
propose two different approaches to solve the corresponding
optimization problem. In Section IV, we compare the proposed
methods with state-of-the-art tensor subspace learning methods
for classification applications.

II. BACKGROUND

Let Yk
c ∈ RI1×I2×···×IN be a sample tensor where c ∈

{1, . . . , C} is the class index and k ∈ {1, . . . ,K} is the
sample index, from a given training data with C classes where
each class has K samples.
A. Tensor-Train Notation

Definition 1. (Vectorization, Matricization and Reshaping)
V(.) is a vectorization operator such that V(Yk

c ) ∈
RI1I2...IN×1. Tn(.) is a tensor-to-matrix reshaping operator
defined as Tn(Yk

c ) ∈ RI1...In×In+1...IN and the inverse
operator is denoted as T−1

n (.). Mk(.) is a matrix reshaping
operator defined as Mk(D) ∈ Rn1n2...nk×nk+1...nK where
D ∈ Rn1...nd×nd+1...nK and d 6= k.
Definition 2. (Left and right unfolding) The left unfolding
operator creates a matrix from a tensor by taking all modes
except the last mode as row indices and the last mode as
column indices, i.e. L(Yk

c ) ∈ RI1I2...IN−1×IN which is
equivalent to TN−1(Yk

c ). Right unfolding transforms a tensor
to a matrix by taking all the first mode fibers as column
vectors, i.e. R(Yk

c ) ∈ RI1×I2I3...IN which is equivalent to
T1(Yk

c ). The inverse of these operators are denoted as L−1(.)
and R−1(.), respectively.
Definition 3. (Tensor Merging Product) Tensor merging prod-
uct connects two tensors along some given sets of modes. For
two tensors A ∈ RI1×I2×···×IN and B ∈ RJ1×J2×···×JM

where In = Jm and In+1 = Jm−1 for some n and m, tensor
merging product is shown as [9]:

C = A×m,m−1
n,n+1 B. (1)

C ∈ RI1×···×In−1×In+2×···×IN×J1×···×Jm−2×Jm+1×···×JM

is calculated as:
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C(i1, . . . , in−1, in+2, . . . , iN , j1, . . . , jm−2, jm+1, . . . , jM ) =

In∑
t1=1

Jm−1∑
t2=1

[
A(i1, . . . , in−1, in = t1, in+1 = t2, in+1, . . . , iN )

B(j1, . . . , jm−2, jm−1 = t2, jm = t1, jm+1, . . . , jM )
]
. (2)

B. Tensor-Train Decomposition

Using tensor-train decomposition, each element of Yk
c can be

represented as:

Yk
c (i1, i2, . . . , iN ) = U1(1, i1, :)U2(:, i2, :) . . .UN (:, iN , :)x

k
c ,

(3)

where Un ∈ RRn−1×In×Rn , Rn < In are the ranks of the
corresponding mode n ∈ {1, . . . , N} and xk

c ∈ RRN×1 are
the projected sample vectors. TT decomposition given in (3)
can be rewritten as, Yk

c = U1 ×1
3 U2 ×1

3 · · · ×1
3 UN ×1

3 x
k
c [9].

When Yk
c is vectorized, an equivalent matrix projection for

(3) is obtained as:

V(Yk
c ) = L(U1 ×1

3 U2 ×1
3 · · · ×1

3 UN )xk
c . (4)

For the sake of simplicity, we define U = L(U1 ×1
3 U2 ×1

3

· · ·×1
3 UN ) where U ∈ RI1I2...IN×RN . When L(Un)s are left

orthogonal, U is also left orthogonal [13].

C. LDA

LDA for vectorized tensor data finds an orthogonal projection
U that maximizes the discriminability of projections:

argmin
U

tr(U>(SW − λSB)U) = argmin
U

tr(U>SU), (5)

where S = SW − λSB , SW and SB are, respectively, within-
class and between-class scatter matrices given by:

SW =

C∑
c=1

K∑
k=1

V(Yk
c −Mc)V(Yk

c −Mc)
>,

SB =

C∑
c=1

K∑
k=1

V(Mc −M)V(Mc −M)>,

where Mc = 1
K

∑K
k=1 Y

k
c is the class mean for each class c

andM = 1
CK

∑C
c=1

∑K
k=1 Y

k
c is the total mean of all sample

tensors.
Since U is an orthogonal projection matrix, this is equivalent

to minimizing within-class scatter and maximizing between
class scatter of projections. (5) can be solved by taking the
lowest RN eigenvalues of S ∈ RI1...IN×I1...IN as U .

When the data are higher order tensors, LDA needs to first
vectorize them and then find a solution as shown above. This
creates several problems as the intrinsic structure of the data
is destroyed and dimensionality, time and storage cost for the
subspace increases exponentially. Thus, we propose to solve
the above problem by constraining U to be a TT subspace to
reduce the computational and storage complexity and to obtain
a solution that will preserve the inherent structure.

III. TENSOR-TRAIN DISCRIMINANT ANALYSIS (TTDA)
The goal of TTDA is to learn projection tensors Un ∈
RRn−1×In×Rn , n ∈ {1, . . . , N} using TT decomposition such
that the discriminability of projections xk

c , ∀c, k is high and Un
are left orthogonal, i.e. L(Un)>L(Un) = IRn−1In where Is
is an identity matrix of size s × s. To find optimal Uns, we
equivalently rewrite (5) as:

Un = argmin
Ûn

tr

[
L(U1 ×1

3 · · · ×1
3 Ûn ×1

3 · · · ×1
3 UN )>

SL(U1 ×1
3 · · · ×1

3 Ûn ×1
3 · · · ×1

3 UN )

]
, (6)

which is dependent on Uk, ∀k ∈ {1, . . . , N}, k 6= n. Hence,
the solution for each Un will be computed iteratively, by fixing
Uk,∀k 6= n which is sub-optimal.

Let UL
n−1 = U1 ×1

3 U2 ×1
3 · · · ×1

3 Un−1 and UR
n = Un+1 ×1

3

· · · ×1
3 UN . Using tensor merging product instead of unfolding

operator and leaving Ûn out, it can be shown [11] that the
solution to (6) is found by first calculating:

An = tr84

[
UL
n−1 ×1,...,n−1

1,...,n−1

[
UR
n ×n+1,...,N

1,...,N−n

(
UL
n−1 ×N+1,...,N+n−1

1,...,n−1 (UR
n ×N+n+1,...,2N

1,...,N−n S)
)]]

, (7)

where S = T−1
N (S) ∈ RI1×···×IN×I1×···×IN and An ∈

RRn−1×In×Rn×Rn−1×In×Rn . trji denotes the trace operation
on matrix slices defined by modes i and j which reduces these
modes. Then, the solution to (6) is:

Un = argmin
Ûn

(
Ûn ×1,2,3

1,2,3

(
An ×1,2,3

4,5,6 Ûn
))

. (8)

Let An = T3(An) ∈ RRn−1InRn×Rn−1InRn , then (8) can
be rewritten as:

Un = argmin
Ûn

V(Ûn)>AnV(Ûn). (9)

This is a non-convex function due to unitary constraints and it
can be solved by the algorithm proposed in [14]. The procedure
above is computationally expensive due to the complexity of
finding each An, which is on the order of O

(
Rn

∏N
i=1 I

2
i

)
.

A. Approximate Solution
In order to reduce the complexity, let VRN ∈ RI1I2...IN×RN

be the solution to the LDA problem in (5), that is, a matrix
with columns corresponding to the RN eigenvectors of S
corresponding to the smallest eigenvalues. Then, the goal
is to find a TT subspace {U1, . . . ,UN} that will give the
best approximation to VRN . First, all Uns are initialized by
TT decomposition. Then, the optimization function can be
reformulated as:

min
U
‖U − VRN

‖2F = min
U1,U2,...,UN

‖L(U1 ×1
3 · · · ×1

3 UN )− VRN
‖2F .

(10)

To solve this problem for each Un, (10) can equivalently be
written as [11]:

argmin
Ûn

∥∥∥∥ [IIn ⊗ L(UL
n−1)

]
L(Ûn)R(UR

n )−Mn(VRN )

∥∥∥∥2
F

,

(11)
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The above problem is a non-convex problem due to unitary
constraints on Ûn where the convex part is in the form
‖HQP −G‖2F where Q>Q = I and can be solved using the
algorithm proposed in [14]. A pseudo-code for this solution is
given in Algorithm 1.

Algorithm 1 Tensor-Train Discriminant Analysis-
Approximated Tensor Network (TTDA-ATN)

Input: Input tensors Yk
c ∈ RI1×I2×···×IN where c ∈

{1, . . . , C} and k ∈ {1, . . . ,K}, λ, R1, . . . , RN

Output: Un, n ∈ {1, . . . , N}, and xk
c , ∀c, k

Un ← IIn(:, 1 : Rn), ∀n ∈ {1, . . . , N}.
S ← SW − λSB .
VRN ← V (:, 1 : RN ), where [V,Λ] = eig(S).
for n = 1 : N do

H ← IIn ⊗ L(UL
n−1).

P ← R(UR
n ).

G←Mn(VRN ).
Q← argminQ(‖HQP −G‖2F ), Q>Q = I.
Un ← L−1(Q)

end for
U = L(U1 ×1

3 U2 ×1
3 · · · ×1

3 UN )
xk
c ← U>V(Yk

c ), ∀c, k.

B. Two-Way TTDA (TTDA-TW)

As shown in [11], the procedure to calculate An and solve
(6) is computationally expensive. On the other hand, TTDA-
ATN requires the solution of LDA, i.e. VRN , which increases
the complexity exponentially as mentioned before. Thus, there
is a need to develop a method to reduce the complexity of
computing Ans, taking advantage of TT structure.

With TT, by permuting the sample mode and expressing
column and row spaces using two sets of Uns, the inputs can
be projected to a core matrix. Thus, we propose the following
procedure to increase the efficiency of the representation:

1) Separate the Uns into two different sets as left and right
projection subspaces. Then, TT can be re-expressed:

Yk
c = U1×1

3 · · · ×1
3 Um×1

3 Z
k
c ×1

2 Um+1×1
3 · · · ×1

3 UN , (12)

where Zk
c ∈ RRm×Rm+1 is the projected sample,

Un ∈ RRn×In×Rn+1 , n ≥ m + 1 and Un ∈
RRn−1×In×Rn , n < m+ 1.

2) Solve for the left-set U1, . . . ,Um by applying TTDA on
projections of Yk

c ∀c, k on the right-set Um+1, . . . ,UN .
3) Solve for the right-set Um+1, . . . ,UN by applying TTDA

on projections of Yk
c ∀c, k on the left-set U1, . . . ,Um.

4) Stop when a convergence criterion is met or a fixed
number of iterations is reached.

To select m, we use a center of mass approach and find
the m that minimizes |

∏m
i=1 Ii −

∏N
j=m+1 Ij |. This way, the

problem can be separated into two parts which have similar
computational complexities.

Let UL
m = L(U1 ×1

3 · · · ×1
3 Um) = L(UL

m) ∈ RI1...Im×Rm

and UR
m = R(Um+1 ×1

3 · · · ×1
3 UN ) = R(UR

m) ∈
RRm+1×Im+1...IN , then (12) can be equivalently written as:

Tm(Yk
c ) = (UL

mZ
k
c )UR

m. (13)

Using the right orthogonality of UR
m, Tm(Yk

c )UR
m
>

= UL
mZ

k
c .

Since this is in the same form as (4) when UR
m is fixed, we

can solve for U1, . . . ,Um using the same procedure as solving
(8) [11]. Now, instead of solving for N different Uis, we will
only solve for m < N different Uis, which will greatly reduce
the computational cost even when this operation is done for
both left and right sets.

Once the left-set is obtained, we proceed to solve for the
right-set. Using left orthogonality of UL

m, (12) can also be
written as:

UL
m

>
Tm(Yk

c ) = Zk
cU

R
m,

Tm(Yk
c )
>
UL

m = UR
m

>
Zk

c

>
, (14)

where UR
m
>

= R
(
Um+1 ×1

3 · · · ×1
3 UN

)>
=

L
(
UN ×3

1 ×UN−1 ×3
1 · · · ×3

1 Um+1

)
. Thus, (14) has the

same structure as (4) when UL
m is fixed and can be used to

solve for Um+1, . . . ,UN . After finding Un, n ∈ {1, . . . , N},
the corresponding Zk

c is found as follows:

Zk
c = UL

m

>
Tm(Yk

c )UR
m

>
. (15)

IV. EXPERIMENTS

In this work, we used COIL-100 and Yale-B Face datasets to
test the proposed methods.

COIL-100: The dataset consists of 7,200 RGB images of
100 objects of size 128 × 128. Each object has 72 images,
where each image corresponds to a different pose angle ranging
from 0 to 360 degrees with increments of 5 degrees. For
our experiments, we used grayscale images of 20 objects
and downsampled these to 64 × 64. Each sample image was
then reshaped to create a tensor of size 8 × 8 × 8 × 8, i.e.
Yk

c ∈ R8×8×8×8.
Yale-B: The Yale-B Face database [16, 17] is a collection

of face images with varying illumination angles and poses.
In this paper, a subset which consists of 20 subjects with 64
different illumination angles under the same pose was used. We
downsampled the images to 96× 84 and reshaped each image
to a tensor of size 12× 8× 7× 12, i.e. Yk

c ∈ R12×8×7×12.
We compare the proposed methods with TTNPE-ATN[11],

DGTDA[4], CMDA[4] and LDA for different experimental
settings. For LDA, TTDA-ATN and TTNPE-ATN, λ = 1
is selected. For TTDA-TW, we experimented with several λ
values. For DGTDA, λ is set to the largest eigenvalue of
SB/SW as proposed in [4]. 1-nearest neighbor classification
is used for all algorithms.

First, we compare all methods for varying levels of nor-
malized storage cost which is defined as the logarithm of the
total number of elements in subspaces and projections divided
by the number of elements in the original tensors. For each
dataset, 20 samples from each class were selected randomly as
training data and the remaining samples were used for testing.
This experiment was repeated 10 times and average results
are presented in Figs. 1 and 2. From Figs. 1(a) and 2(a), it
is observed that for low storage complexity, TTDA-TW and
DGTDA are the most computationally efficient methods. With
increasing ranks, the subspace sizes for TT methods increase
which increases the complexity for convex optimization and
results in higher subspace computation times. In general,
LDA, TTDA-ATN and TTNPE have higher complexity as
they all require an eigenvalue decomposition of a matrix of
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TABLE I
COMPARISON OF CLASSIFICATION ACCURACY OF ALGORITHMS

ON COIL-100 DATASET

% Hold-out ratios r (%)
Algorithms 6.9 13.8 50
LDA 83.8± 1.4 91.8± 1.47 98.4± 0.45
TTNPE 49.9± 3.34 61.6± 2.45 81.1± 2.76
CMDA 76.3± 1.14 85.8± 1.22 94.8± 0.84
DGTDA 68.2± 1.14 79.6± 1.61 95.6± 0.9
TTDA-ATN 86± 1.72 93.6± 1.1 98.7± 0.39
TTDA-TW(λ = 10) 86.9± 2.44 90.5± 1.13 73.8± 1.1
TTDA-TW(λ = 102) 84.4± 1.75 92.4± 1.08 99.2± 0.28

TABLE II
COMPARISON OF CLASSIFICATION ACCURACY OF ALGORITHMS

ON YALE-B FACE DATASET

% Hold-out ratios r (%)
Algorithms 12.5 25 50
LDA 24.5± 1.37 32.5± 1.4 37.3± 1.77
TTNPE 29.6± 1.6 38.3± 1.26 43.4± 1.63
CMDA 72.4± 2.48 82.3± 0.965 90± 1.55
DGTDA 11.8± 0.827 11.3± 0.612 19.3± 1.18
TTDA-ATN 23.7± 1.43 31.2± 1.57 35.9± 1.82
TTDA-TW(λ = 20) 77± 2.3 55.1± 8.36 30.3± 4.19
TTDA-TW(λ = 50) 57.5± 9.86 83.9± 1.88 84.3± 10.2
TTDA-TW(λ = 70) 40.8± 7.87 81.4± 2.4 89.6± 1.4

size I1 . . . IN × I1 . . . IN . It is also observed from Figs. 1(b)
and 2(b) that, in general, proposed methods give the highest
accuracy with respect to storage cost. Overall, TTDA-TW gives
the best classification accuracy results for an appropriately
selected value of λ. Other methods give similarly high accuracy
at much higher storage costs.

Second, using a fixed storage cost, we experimented with
different hold-out ratios r defined as the ratio of the number
of training samples to the total number of samples. This
experiment was repeated 10 times and average classification
accuracy results with standard deviation are presented in Tables
I, II. It is observed that the proposed methods have the best
results for similar storage complexities. Although for some r
TTDA-ATN and CMDA have slightly higher accuracy, TTDA-
TW achieves similar accuracy at much lower computational
complexity. Also, since λ values have an impact on the
performance of TTDA-TW, higher classification accuracy may
be obtained by optimizing λ. This can be done easily as
computation of TTDA-TW subspaces is not expensive at lower
storage costs.

V. CONCLUSION

In this work, we proposed two novel supervised TT based
algorithms for tensor object classification. First, we proposed to
learn a TT subspace model to approximate the LDA projection
matrix. Next, we proposed a two-way TT algorithm with better
computational efficiency and fidelity to original data structure.
The proposed approaches are tested on image classification
tasks and compared to LDA, unsupervised TT and supervised
Tucker decomposition based methods.

TTDA-ATN has been shown to be effective in classification
tasks having low storage complexity while TTDA-TW achieves
computational efficiency, low storage cost and high classifica-
tion accuracy all at the same time.

(a)

(b)

Fig. 1. Comparison of computation time, storage complexity and accu-
racy for COIL: (a) Subspace computation time vs storage complexity,
(b) Classification accuracy vs storage complexity for different methods.

(a)

(b)

Fig. 2. Comparison of computation time, storage complexity and accu-
racy for Yale B: (a) Subspace computation time vs storage complexity,
(b) Classification accuracy vs storage complexity for different methods.
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