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ABSTRACT

We present a momentum-based accelerated iterative hard
thresholding (IHT) for low-rank matrix completion. We
analyze the convergence of the proposed Heavy Ball (HB)
accelerated IHT near the solution and provide optimal step
size parameters that guarantee the fastest rate of convergence.
Since the optimal step sizes depend on the unknown structure
of the solution matrix, we further propose a heuristic for pa-
rameter selection that is inspired by recent results in random
matrix theory. Our experiment on a simple matrix completion
setting verifies our analysis and illustrates the competitive
rate of convergence that can be obtained with the proposed
algorithm.

Index Terms— Low-rank matrix completion, Heavy Ball
method, Iterative hard thresholding.

1. INTRODUCTION

This paper studies the problem of low-rank matrix comple-
tion. Given anm×nmatrixM with low rank r and a set S ⊂
[m]× [n] of its observed entries, where [m] = {1, 2, . . . ,m},
the goal is to recover the remaining entries of M . Similar
to sparse recovery, the matrix completion problem (MCP) is
shown to be NP-hard [1], considering the non-convexity of
the problem rooted in the rank constraint.

In 2009, Candès and Recht [2] achieved a major break-
through in matrix completion. The authors presented a con-
vex relaxation approach to MCP by replacing the non-convex
rank minimization with a (convex) nuclear norm minimiza-
tion. They showed that one can perfectly recover most low-
rank matrices provided the cardinality of S is sufficiently
large. Following this work, a plethora of algorithms have
been proposed for low-rank matrix completion via nuclear
norm minimization. Among which, first-order methods (e.g.,
proximal-type algorithms) have grown more attractive due
to their simplicity and scalability. However, the conservative
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nature of the soft thresholding operator associated with such
methods often results in slow convergence.

To improve convergence while maintaining scalability,
the original non-convex formulation of the problem was revis-
ited. Empirical evidence indicated that iterative approaches
to the non-convex rank minimization are faster to converge
compared to their convex counterparts. Notwithstanding,
theoretical convergence guarantees for such methods are non-
trivial and often rely on the Restricted Isometry Property
(RIP) of the affine transformations in matrix sensing. Most
known examples in this category include iterative hard thresh-
olding (IHT) [3] and alternating minimization (AMMC) [4].
Unfortunately, RIP does not hold for matrix completion even
though this problem is a special case of matrix sensing. Thus,
recent efforts in understanding algorithms for MCP are lim-
ited to probabilistic convergence guarantees [5, 6] or local
convergence analysis [7, 8]. Moreover, acceleration tech-
niques have been introduced to improve the performance of
IHT in matrix sensing [9, 10]. Under similar assumptions to
matrix RIP, the authors provided an analysis of momentum
behavior and proved the linear convergence of accelerated
IHT. Empirically, the authors of [10] demonstrated a faster
convergence of accelerated IHT relative to plain IHT. How-
ever, they stated that the sufficient conditions to guarantee
such acceleration remain as an open question.

In this work, we develop an accelerated variant of IHT for
solving MCP. While the aforementioned approaches to accel-
erating IHT employ Nesterov’s Accelerated Gradient method,
we utilize Heavy Ball method due to its faster local conver-
gence. In particular, we provide a theoretical analysis on
the local convergence of the proposed algorithm and identify
the choice of step sizes that guarantees optimal acceleration.
Since it is computationally expensive to perform line search
for the momentum parameters, we propose a simple heuris-
tic to approximate the optimal values based on recent results
from random matrix theory. Our experiment verifies the con-
vergence rates obtained in our analysis and illustrates the ef-
ficiency of the proposed algorithm.
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2. NOTATIONS

Without loss of generality, assume m ≥ n. Assume the so-
lution matrix M = UΣV T is a rank-r matrix with singular
values σ1 ≥ σ2 ≥ . . . ≥ σr > σr+1 = . . . = σn = 0. We
partition U,Σ, V as follows:

U =
[
U1 U2

]
,Σ =

Σ1 0

0 Σ2

 , V =
[
V1 V2

]
where Σ1 = diag(σ1, . . . , σr), Σ2 = 0, and U1, V1, U2, V2
are semi-unitary matrices corresponding to the partition of Σ.

Let X ∈ Rm×n be an arbitrary matrix. We define the
rank-r projectionPr asPr(X) =

∑r
i=1 σi(X)ui(X)vi(X)T ,

where σi(X), ui(X), and vi(X) are the i-th singular value,
column vector, and row vector, of X , respectively. This pro-
jection produces the best rank-r approximation of X [11]
and it is unique if either σr(X) > σr+1(X) or σr(X) = 0.
Further, we denote the cardinality of S by s. The sampling
operator XS is given by

[XS ]ij =

{
Xij if (i, j) ∈ S,
0 if (i, j) ∈ Sc.

where Sc is the complement of S. Let Ŝc = {i+m(j − 1) |
(i, j) ∈ Sc}. We define Sc ∈ R(mn−s)×mn as the row se-
lection matrix obtained by selecting a subset of rows corre-
sponding to the elements of Ŝc from the mn × mn identity
matrix.

3. BACKGROUND

Iterative hard thresholding for matrix recovery was first intro-
duced by Jain et. al. [3] and quickly became a very attractive
method for solving this problem, thanks to its simplicity and
efficiency over the proximal-type algorithms [12]. Despite
the successful development in theoretical analyses of IHT for
matrix sensing [10,13], there has been little progress in under-
standing the convergence of IHT for low-rank matrix comple-
tion. The lack of RIP guarantees for MCP leaves the global
convergence of IHT for MCP as an open question. Nonethe-
less, empirical performance analysis of the algorithm often
shows linear convergence of the approach. Hence, there have
been efforts to establish local convergence guarantees [7, 8].
Notably, the authors of [7] showed that the local rate of con-
vergence of MCP-IHT can be described in a closed-form.
We review the IHT algorithm for matrix completion in Al-
gorithm 1 and restate the local convergence results in Theo-
rem 1 and Theorem 2, using our aforementioned notations for
consistency.

Theorem 1. (Rephrased from [7]) Let ∆ ∈ Rm×n be
a perturbation matrix such that ‖∆‖F < ε

2 , where ε =
min

σi>σi+1

{σi − σi+1}. Then the rank-r projection of M + ∆ is

given by

Pr(M + ∆) = M + ∆− U2U
T
2 ∆V2V

T
2 +Q(∆) (1)

Algorithm 1 Iterative Hard Thresholding

1: X(0) = MS
2: for k = 1, 2, . . . do
3: X(k) = Pr

(
X(k−1) − αk[X

(k−1) −M ]S
)

where Q : Rm×n → Rm×n satisfies ‖Q(∆)‖F = O(‖∆‖2F ).

Note that (1) can be vectorized as vec
(
Pr(M + ∆)

)
=

vec(M)+
(
Imn−(V2⊗U2)(V2⊗U2)T

)
vec(∆)+q(vec(∆)),

where q(vec(∆)) = vec(Q(∆)). Denote the error vector
e(k) = Sc vec(X(k) − M). Then considering Algorithm 1
with a unit step size (αk = 1), one can show a recursion of
the error vector as follows

e(k) = (Imn−s −H)e(k−1) + q(e(k−1))

where H = Sc(V2 ⊗ U2)(V2 ⊗ U2)TSTc . Further, let L =
λmax(H) and µ = λmin(H) be the largest and smallest eigen-
values of H , respectively. Since H is positive semi-definite
and Sc, V2, U2 are semi-unitary matrices, it holds that 0 ≤
µ ≤ L ≤ 1.

Theorem 2. (Rephrased from [7]) If µ > 0, then Algorithm 1
with a unit step size converges to M locally at a linear rate
1 − µ. In other words, there exists a neighborhood E(M) of
M and a constant C such that if X(0) ∈ E(M), then∥∥∥X(k) −M

∥∥∥
F
≤ C

(
1− µ

)k ∥∥∥X(0) −M
∥∥∥
F
.

Interestingly, the convergence rate 1− µ depends only on the
solution M and the set of observed entries S. It is also note-
worthy that similar local linear convergence has been studied
later in [8]. However, there is no explicit formulation of the
convergence rate specified by the authors.

To gain intuition into accelerated IHT, let us start with
classic results on the convergence of first-order methods for
minimizing convex quadratic functions. In Table 1, the pa-
rameter selection is optimal in the sense that no other choice
of fixed step sizes achieves faster convergence rate (see de-
tails in [14]). We list methods in ascending order of the con-
vergence rate. In fact, Heavy Ball method not only has the
fastest rate but also achieves the lower bound on convergence
rate for any first-order methods for minimizing µ-strongly
convex, L-smooth functions [15]. Extending these results to
study the local convergence of those algorithms for optimiz-
ing a non-convex function, one could argue that the objective
function can be well approximated by a quadratic inside the
region near the optimum. Hence, we consider an HB-variant
of MCP-IHT and analyze its local convergence behavior.

4. MAIN RESULTS

We begin this section by a brief discussion on parameter se-
lection for plain IHT. In [3], the authors suggested an empiri-
cal choice of αk = mn

(1+δ)s , where δ is a constant determined
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Table 1. Parameter selection and convergence rate of different first-order methods for minimizing a convex quadratic function
f(x) = 1

2x
TAx + bTx + c, where x ∈ Rd and µId � A � LId. Asterisks indicate algorithms with optimal fixed step sizes.

The last column describes the proportional numbers of iterations needed to reach a relative accuracy ε, i.e.,
∥∥x(k) − x∗∥∥

2
≤

ε
∥∥x(0) − x∗∥∥

2
. All algorithms share the same computational complexity per iteration.

Method Update at each iteration Step size selection Rate #Iters. needed

Gradient
x(k) = x(k−1) − α∇f(x(k−1))

α = 1
L 1− µ

L
L
µ log(1/ε)

Gradient* α = 2
L+µ 1− 2µ

L+µ
1
2 (Lµ + 1) log(1/ε)

Nesterov y(k) = x(k−1) − α∇f(x(k−1))

x(k) = y(k−1) + β(y(k−1) − y(k−2))

α = 1
L , β =

√
L−√µ√
L+
√
µ

1−
√
µ√
L

√
L
µ log(1/ε)

Nesterov* α = 4
3L+µ , β =

√
3L+µ−2√µ√
3L+µ+2

√
µ

1− 2
√
µ√

3L+µ
1
2

√
3Lµ + 1 log(1/ε)

Heavy Ball*
x(k) = x(k−1) − α∇f(x(k−1))

α =
(

2√
L+
√
µ

)2
, β =

(√L−√µ√
L+
√
µ

)2
1− 2

√
µ√

L+
√
µ

1
2 (
√

L
µ + 1) log(1/ε)

+ β(x(k−1) − x(k−2))

Algorithm 2 HB-IHT

1: X(0) = X(1) = MS
2: for k = 1, 2, . . . do
3: X(k+1) = Pr

(
X(k)−αk[X

(k)−M ]S
)
+βk(X

(k)−X(k−1))

from experiments. To further investigate the step-size selec-
tion, we examine the local convergence rate for Algorithm 1
and obtain the optimal step size in the following theorem.

Theorem 3. If µ > 0, then Algorithm 1 with step size αk =
2

L+µ converges to M locally at a linear rate 1 − 2µ
L+µ . In

other words, there exists a neighborhood E(M) of M and a
constant C such that if X(0) ∈ E(M), then∥∥∥X(k) −M

∥∥∥
F
≤ C

(
1− 2µ

L+ µ

)k ∥∥∥X(0) −M
∥∥∥
F
.

Although the optimal step size in Theorem 3 is similar to the
classical result in Table 1, we note that the analysis addresses
the issue on the non-convex nature of the rank-r projection.

4.1. HB-IHT

Similar to the classic Heavy Ball method, we propose an ac-
celerated algorithm that adds a momentum term to the update
in plain IHT (see Algorithm 2). This simple modification to
plain IHT maintains the computational complexity of the al-
gorithm with one additional step of calculating the difference
matrix. On the other hand, the local rate of convergence can
be improved significantly. Theorem 4 characterizes the local
convergence of HB-IHT by providing the optimal parameter
selection that guarantees improvement over plain IHT.1

Theorem 4. If µ > 0, then Algorithm 2 with step sizes αk =(
2√

L+
√
µ

)2
, βk =

(√L−√µ√
L+
√
µ

)2
converges to M locally at a

1The proofs of Theorem 1, 3 and 4 are given at the folowing link:
http://web.engr.oregonstate.edu/∼vutru/hb appendix.pdf

linear rate 1− 2
√
µ√

L+
√
µ

. In other words, there exists a neigh-

borhood E(M) of M and a constant C such that if X(0) ∈
E(M), then∥∥∥X(k) −M

∥∥∥
F
≤ C

(
1−

2
√
µ

√
L+
√
µ

)k ∥∥∥X(0) −M
∥∥∥
F
.

Further, this is the optimal rate among all fixed α, β.

It is noteworthy that despite the operation of non-convex rank-
r projections, we still end up with the similar result given in
Table 1, thanks to the approximation of Pr given in (1).

4.2. A practical guide to parameter selection

Step size selection is critical to the performance of HB-IHT in
practice. In this section, we propose a simple heuristic to de-
termine the values of αk and βk in Algorithm 2 with no prior
knowledge about L and µ. The idea is to exploit the special
structure of H in order to estimate its extreme eigenvalues.
We express this matrix in form of H = WWT , where

W = Sc(V2 ⊗ U2) = Sc(V ⊗ U)(S2V ⊗ S2U )T ,

and S2U ∈ R(m−r)×m, S2V ∈ R(n−r)×n are row selection
matrices. Note that W is a submatrix of the Kronecker prod-
uct V ⊗ U with the row ratio p = 1 − s

mn and the column
ratio q = (1 − r

m )(1 − r
n ). In this representation, the struc-

ture of H is closely related to the MANOVA random matrix
ensemble, and more interestingly, the limiting density of its
eigenvalues is identified by Watcher [16], dating back to the
early 1980s. In his study, Watcher showed that as the size
of a MANOVA matrix with parameters (p, q) approaches in-
finity, its empirical spectral distribution (ESD) converges to
a deterministic probability measure supported on the interval
[λ−, λ+]∪ {0, 1}, where λ± =

(√
p(1− q)±

√
q(1− p)

)2
.

Recently, similar result was also found by Raich and Kim
[17] for the truncation of random unitary matrices. Moreover,
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Farrell and Nadakuditi [18] extended the results from Haar
(uniformly) distributed unitary matrices to Kronecker prod-
uct case. The authors proved that the ESD of random matri-
ces of the form Π1(U ⊗V )Π2(U ⊗V )∗Π1, where Π1,Π2 are
orthogonal projections of ranks pn and qn, respectively, also
converges to the same limiting distribution. Considering H
to be an instance of this case, we conjecture that its spectral
distribution will be close to the aforementioned. In particular,

1. if p < q, then H has no zero eigenvalue and the small-
est eigenvalue ofH is close to λ− with high probability,

2. if p+ q > 1, then H has unit eigenvalue and the largest
eigenvalue of H is 1.

It is worthwhile to note that both conditions usually hold in
practice when q is rather close to 1. Hence, we propose the
following estimation of L and µ:

L̂ = 1, µ̂ =
(√

q(1− p)−
√
p(1− q)

)2
. (2)

Empirically, we observe this heuristic significantly outper-
forms plain IHT in terms of convergence. However, un-
derstanding when and how it works would involve the non-
asymptotic theory of random matrices [19]. For instance,
characterizing the variance of extreme eigenvalues, i.e., dif-
ference between µ and µ̂, in case of Kronecker unitary ma-
trices is much more challenging than their Haar-distributed
counterparts. Our experiments suggest that they tend to have
wider fluctuations. We leave this analysis for future direction.

5. NUMERICAL EVALUATION

This section presents an empirical evaluation of several meth-
ods for low-rank matrix completion including the proposed
approach. First, we generate a low-rank solution matrix M ∈
Rm×n by taking the product of an m× r matrix and an r×n
matrix, each having i.i.d. normally distributed entries. Next,
we sample the observation set S uniformly at random. In
our experiment, we choose m = 50, n = 40, r = 3, and
s = 1000. For comparison, we consider the following meth-
ods: SVT [12], SVP [3], IHTSVD [7] and AMMC [5]. Al-
though the convergence guarantee of SVP does not hold for
MCP in general, it is interesting to compare its empirical per-
formance with optimal step size given in Theorem 3. In our
own implementation of these algorithms, we use the set of
parameters as suggested by the authors. For the proximal-
type SVT algorithm, we set the step size δ = 1.2mns and
the threshold τ = 5

√
mn. For SVP, we set the step size

ηt = mn
1.2s . IHTSVD and AMMC are parameter-free. Finally,

we add HB-IHT with the aforementioned theoretical optimal
step sizes and heuristic step sizes for comparison.

Figure 1 illustrates the Frobenius norm of the error ma-
trix as a function of the number of iterations. The dashed
lines correspond to the theoretical convergence of IHTSVD
(purple) at rate 1 − µ, optimal step size SVP (yellow) at
rate 1 − 2µ

L+µ and optimal step size HB-IHT (green) at rate

50 100 150 200 250 300 350 400 450 500

10
-10

10
-5

10
0

Fig. 1. The distance to the solution (in log-scale) as a function
of the iteration number for various algorithms (solid) and their
corresponding theoretical bounds up to a constant (dashed).
Asterisks indicate algorithms using theoretical step sizes that
are not available in practice. All algorithms share the same
computational complexity per iteration except AMMC.

1 − 2
√
µ√

L+
√
µ

. These three algorithms certainly match the
performance predicted in theory. SVT exhibits the slowest
convergence as expected from our foregoing discussion. By
contrast, all IHT algorithms enjoy the linear convergence.
Without acceleration, SVP with step size either mn

1.2s or 2
L+µ

is clearly faster than IHTSVD. Nevertheless, HB-IHT with
estimated step sizes outperforms all plain IHT algorithms,
yet still slower than HB-IHT with theoretically-optimal step
sizes. Finally, we compare the performance of HB-IHT with
optimal step sizes with AMMC, which is shown to converge
linearly at rate faster than 1/4 in [5]. While our accelerated
algorithm obtains a comparable rate, it requires significantly
less computation per iteration thanks to the recent break-
throughs in k-SVD algorithms [20], i.e., the iteration com-
plexity for HB-IHT is O(mnr + poly(1/ε)), compared to
O(sm2r2 +m3r3) for AMMC as claimed in [5].

6. CONCLUSION AND FUTURE WORK

To summarize, we introduced the use of Heavy Ball method to
significantly accelerate IHT for low-rank matrix completion.
We analyzed the local convergence of HB-IHT and estab-
lished the optimal step sizes to guarantee better performance
over plain IHT. We further provided evidence that these op-
timal values can be approximated by a simple calculation in
practice. Our experiment verified the analysis and demon-
strated the efficiency of the proposed algorithm. Study of our
approach in the noisy case is left for an extended version of
this paper.
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