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ABSTRACT

In this paper, we propose a probabilistic model for analyzing
the generalized interval valued matrix, a matrix that has scalar
valued elements and bounded/unbounded interval valued ele-
ments. We derive a majorization minimization algorithm for
parameter estimation and prove that the objective function is
monotonically decreasing by the parameter update. An exper-
iment shows that the proposed model well handles interval-
valued elements and offers improved performance.

Index Terms— interval valued matrix, nonnegative ma-
trix factorization

1. INTRODUCTION

Nonnegative matrix factorization (NMF) [1, 2] have been ap-
plied to various research fields such as signal processing and
text mining [3, 4, 5, 6, 7]. NMF and its variants are also re-
garded as versatile tools for data analysis and are applied to
e.g., recommendation, social data analysis and purchase log
analysis [8, 9, 10, 11, 12, 13]. However, some extension of
NMF is still required since researchers at the field of data
analysis are faced with various types of data that are collected
in many different ways e.g., membership cards and survey
questionnaires. Especially, the need to analyze data contain-
ing both precise information and imprecise information is in-
creasing.

Let us consider the example of jointly analyzing mem-
bership card data and survey questionnaire results (Fig. 1).
Membership card records are precise data since they provide
exact visit counts such as “user A visited a shop 4 times”.
In contrast, survey questionnaires often yield imprecise data
since the range of the count is imprecise, e.g., “user B vis-
ited more than 3 times”. When combined, these data are
represented by a matrix that has scalar-valued elements and
bounded/unbounded interval-valued elements. We call this
the generalized interval valued matrix. Note that this matrix
is needed to represent various types of data containing both
precise and imprecise information such as data containing pri-
vacy protected and non-protected details, e.g., the exact ages
of some users are hidden by conversion into a range such as
between 30 and 39 years old or more than 50 years old. Thus,
we tackle the problem of analyzing the generalized interval
valued matrix.

Fig. 1: Example of generalized interval valued matrix

This paper proposes a new probabilistic model called
generalized interval valued nonnegative matrix factoriza-
tion (GIV-NMF). GIV-NMF is derived by extending nonneg-
ative matrix factorization (NMF) [1], which can handle only
scalar-valued elements. The key to model formulation is the
use of the cumulative density function (CDF) and latent vari-
ables indicating the scalar-values underlying interval-valued
elements. We develop the majorization minimization (MM)
algorithm [14, 15] for parameter estimation and prove that
the objective function is monotonically decreasing by the
parameter update.

Our approach using CDF can be found in the model
for survival analysis (e.g., [16]) since survival data con-
tain censored samples whose values are not observed when
the values exceed certain threshold. Similar to the existing
method for survival data [17, 18, 19], truncated Gaussian
distribution [20] has a important role for the derivation of the
proposed algorithm. In the context of interval-valued data
analysis, the work most related to ours comes from Shen et
al. [21]. They adopt a heuristics approach that constructs two
scalar-valued matrices by extracting lower/upper limit of the
interval-valued elements. Therefore, it can deal only with
bounded interval-valued elements and not with unbounded
interval elements. To the authors’ knowledge, our proposal
is the first factorization method that can deal with the matrix
with unbounded interval elements and so should be seen as a
fundamental method for interval-valued matrix analysis.

We conduct experiments on both synthetic and real data
to confirm the effectiveness of the proposal. Using test mean
squared error as a performance measure, we show that the
proposed method can well handle the interval-valued ele-
ments with improved performance.
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2. PROPOSED METHOD

2.1. Formulation

Our proposal factorizes the I × J generalized interval valued
nonnegative matrix X . X contains nonnegative scalar-valued
elements, xij , and interval-valued elements, (xLij , x

R
ij) (0 ≤

xLij ≤ xRij), i.e., X = {xij}(i,j)∈Ωsv
∪{(xLij , xRij)}(i,j)∈Ωiv

,
where Ωsv and Ωiv is the index set whose elements are scalar
values and the index set whose elements are interval values,
respectively. We also denote all observed elements as Ω =
Ωsv ∪ Ωiv . The interval element (xLij , x

R
ij) indicates that the

exact value, xij , is unknown but it is within the interval, xLij ≤
xij ≤ xRij . It is allowed that xRij be an infinitely large value.

Let Θ be the model parameter. Θ consists of factor matri-
ces A = {air}I,Ri,r=1, B = {bjr}J,Rj,r=1 and precision parame-
ter τ . R is the number of factors. Following standard NMF
formulation, we assume that the (scalar-valued) element of X
follows the normal distribution

P (xij |Θ = {A,B, τ}) = f(xij
∣∣x̂ij , τ), (1)

where x̂ij =
∑R
r=1 airbjr and f is the probability density

function (PDF) of the normal distribution:

f(x|µ, τ) =
1√

2πτ−1
exp
{
−τ

2
(x− µ)2

}
. (2)

Note that we can adopt other distributions such as the Poisson
distribution in an analogous manner.

The key of our model lies in its ability to handle interval-
valued elements. This is done by using the following cumu-
lative density function (CDF):

F (C|µ, τ) =

∫ C

−∞
f(x|µ, τ)dx (3)

F (C|µ, τ) indicates the probability that a random variable
following f takes value less than C. Therefore, the proba-
bility that xij following f(xij

∣∣x̂ij , τ) is within the interval
(xLij , x

R
ij) is given by

P (xij∈(xLij , x
R
ij)|Θ)= F (xRij

∣∣x̂ij , τ)−F (xLij
∣∣x̂ij , τ). (4)

Use of PDF and CDF enable us to handle unbounded interval-
valued elements since the limits are defined as limx→∞ f(x|µ,
τ) = 0, limC→∞ F (C|µ, τ) = 1. To summarize, the proba-
bility of generating interval valued matrix X is written as

P (X|Θ)=
∏

(i,j)∈Ωsv

P (xij |Θ)
∏

(i,j)∈Ωiv

P (xij∈(xLij , x
R
ij)|Θ).

Model parameter Θ is estimated by optimizing the following
log-likelihood function.

arg min
Θ

L(Θ)=− logP (X|Θ), s.t.A ≥ 0,B ≥ 0, τ ≥ 0

(5)

where A ≥ 0 means that all elements of A are nonnegative.

Fig. 2: distributions Fig. 3: MM scheme

2.2. Algorithm

As shown in the next subsection, the following algorithm can
be used to solve the optimization problem given by Eq. (5).

air ← air

∑
j∈Ωsv

i
xijbjr +

∑
j∈Ωiv

i
ȳijbjr∑

j∈Ωi
x̂ijbjr

, (6)

bjr ← bjr

∑
i∈Ωsv

j
xijair +

∑
i∈Ωiv

j
ȳijair∑

i∈Ωj
x̂ijair

, (7)

τ−1 ← 1

N

{ ∑
(i,j)∈Ωsv

(xij−x̂ij)2 +
∑

(i,j)∈Ωiv

(ȳ
(2)
ij −2ȳij x̂ij+x̂

2
ij)

}
,

(8)

where Ωsvi / Ωivi and Ωsvj / Ωivj is the set of scalar/interval-
valued elements in that i-th row and j-th column, respectively.
ȳij and ȳ(2)

ij are defined as

ȳij=x̂ij+
1

τ

f(xLij |x̂ij , τ)−f(xRij |x̂ij , τ)

F (xRij |x̂ij , τ)−F (xLij |x̂ij , τ)
, (9)

ȳ
(2)
ij =x̂2

ij+
1

τ
+

1

τ

(xLij+x̂ij)f(xLij |x̂ij , τ)−(xRij+x̂ij)f(xRij |x̂ij , τ)

F (xRij |x̂ij , τ)−F (xLij |x̂ij , τ)
.

(10)

Note that if (i, j)-th interval element is unbounded, i.e.,

xRij → ∞, ȳij = x̂ij + 1
τ

f(xL
ij |x̂ij ,τ)

1−F (xL
ij |x̂ij ,τ)

, ȳ(2)
ij = x̂2

ij + 1
τ+

1
τ

(xL
ij+x̂ij)f(xL

ij |x̂ij ,τ)

1−F (xL
ij |x̂ij ,τ)

. Update rules for A, B are given in
“multiplicative form”. The right hand side of the update
for A is (I) always nonnegative and (II) equals air when
xij = x̂ij = ȳij

1. By updating the parameters following
Eq. (6)-(8), the objective function is monotonically decreas-
ing (non-increasing); proof is provided in § 2.4.

2.3. Algorithm Derivation

In this subsection, we derive the update rules given by
Eq. (6)(7)(8). We minimize L(Θ) following the optimiza-
tion scheme of majorization-minimization (MM) [14][15]. In
the scheme of MM, minimization of function L is indirectly
conducted by minimizing the majorizing functional L+.

1nonnegativity of ȳij is confirmed later
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Let us define latent variable Y = {yij}(i,j)∈Ωiv whose
elements yij ∈ (xLij , x

R
ij) indicate elements with “scalar” val-

ues where only interval observations are given. Using Y , we
define the majorizing functional L+ as

L+(Θ, q,S)=Eq[− log h(X,Y ,Θ, S)]+

∫
q(Y ) log q(Y )dY ,

log h(X,Y ,Θ,S) = −N
2

log(2πτ−1)

−
∑

(i,j)∈Ωsv

τ

2

{
x2
ij − 2xij x̂ij +

R∑
r=1

(airbjr)2

sijr

}
−

∑
(i,j)∈Ωiv

τ

2

{
y2
ij − 2yij x̂ij +

R∑
r=1

(airbjr)2

sijr

}
,

where q(Y ) is the auxiliary probability distribution of latent
variable Y and S = {sijr} is an auxiliary variable satisfying∑
r sijr = 1 (∀(i, j)). It can be verified that the majorizing

functional L+ has the following two properties:
1.L(Θ) ≤ L+(q,S,Θ). 2.L(Θ)= minq,S L+(q,S,Θ).

Note that the equality holds if and only if

q(yij)=ftr(yij |x̂ij , τ, xLij , xRij), sijr=
airbjr∑
r′ air′bjr′

. (11)

where ftr(x|µ, τ, a, b) is the truncated normal distribution
(Fig. 2) defined as the distribution whose PDF is given by:

ftr(x|µ, τ, a, b) =

{
f(x|µ,τ)

F (b|µ,τ)−F (a|µ,τ) (if x ∈ (a, b])

0 (otherwise)

The r.h.s of equations (9)(10) come from the moment of the
truncated normal, ȳij = Eq(yij)[yij ] and ȳ(2)

ij = Eq(yij)[y
2
ij ],

respectively [20].
Using the majorizing functional L+, minimization of

functionL is conducted in the following manner: (Step 1) Min-
imizeL+(Θ, q,S) w.r.t. A or B. (Step 2) MinimizeL+(Θ, q,
S) w.r.t. S and q. (Step 3) Minimize L+(Θ, q,S) w.r.t. τ .
See Fig. 3 for visual understanding.

For the first step, we compute the partial derivative of L+

w.r.t. A. The necessary condition of the local minima, which
is the partial derivative ∂L+

∂air
= 0, can be simplified to

air =
( ∑
j∈Ωsv

i

xijbjr +
∑
j∈Ωiv

i

xijbjr)
)/(∑

j∈Ωi

b2jr
sijr

)
. (12)

By substituting Eq. (11) into Eq. (12), we obtain the multi-
plicative update rules for A given by Eq. (6). The update
rules for B are derived in analogous manner.

For the second step, we consider the update for S and
q. The update for S (Eq. (11)) is derived by the method of
Lagrange multipliers which uses the Lagrange function F :

F(S,Λ) = L+(Θ, q,S) +
∑

i,j
λij(

∑
r
sijr − 1), (13)

where ΛS = {λij} are Lagrange multipliers. The update for
q is derived by the variational method and the optimal q is
given by q(Y ) ∝ exp

(
log h(X,Y,Θ, S)

)
. The optimal q is

the one shown by Eq. (11). Update for τ in the third step is
also derived by solving ∂L+

∂τ = 0.

2.4. Theoretical Analysis

Here we show the property of the proposed algorithm 2.

Theorem 1. Objective function L(Θ) is monotonically de-
creasing under the update by Eq. (6)(7) . L(Θ) is invariant if
and only if Θ is at a stationary point.

This theorem indicates that the parameters are “improved”
by the update. The theorem is proven by showing that L+

decreases with each optimization step. We need to prove fol-
lowing two lemmas to prove the theorem.

Lemma 1. L+(q,S,Θ) is a convex function w.r.t. A and thus
A satisfing Eq. (12) is the global minimum while the other
parameters are fixed.

Proof. The second derivative of L+ is given by ∂L+

∂airai′r′
=

δii′δrr′{
∑
j b

2
jr/sijr}, where δii′ = 1 if i = i′, otherwise

δii′ = 0. Since
∑
i,r,i′,r′ vir

∂L+

∂airai′r′
vi′r′ ≥ 0 is satisfied for

arbitrary vir ∈ RI×R, L+ is a convex function w.r.t. A.

Lemma 2. The objective L+(q,S,Θ) is minimized w.r.t.
S and q when S and q equals Eq. (11) and L(Θ) =
minq,S L+(q,S,Θ) holds.

Proof. When auxiliary variable S satisfies Eq. (11), L+

equalsL′ andL(Θ) = L′(q,Θ)−KL(q||p), whereL′(q,Θ) =
−Eq[logP (X,Y |Θ)] +

∫
q(Y ) log q(Y )dy, P (X,Y |Θ) =∏

(i,j)∈Ωsca
N (xij |x̂ij)

∏
(i,j)∈Ωint

N (yij |x̂ij), KL(q||p) =

−
∫
q(Y ) log

{P (Y |X,Θ)
q(Y )

}
. Since KL(q||p) > 0, L′(q,Θ)

is the upper bound of L(Θ). L(Θ) does not depend on q,
and thus L′(q,Θ) is minimized when KL(q||p) = 0, i.e.,
q(Y ) = P (Y |X,Θ) =

∏
(i,j)∈Ωiv ftr(yij |x̂ij , τ, xLij , xRij).

Since L′(q,Θ) ≤ L+(q,S,Θ) is shown by Jensen’s inequal-
ity, this concludes the proof.

The theorem follows from the application of the lemmas.

Proof. Let us denote the parameter and the auxiliary distri-
bution and variables which satisfy L(Θ) = L+(Θ, q,S) as
Θold, qold, Sold. We also denote A after the first step of the
MM given by Eq. (12) as Anew and q,S after the second
step given by Eq. (11) as qnew,Snew. From lemma 1 and
lemma 2, L+(Anew, qold,Sold) ≤ L+(A, qold,Sold) (∀A)
and L+(Anew, qnew,Snew) ≤ L+(Anew, q,S) (∀q,S).
Note that we omit the notation of B and τ . Since L(Aold) =

2We omit proof of τ since it is analogous to the variance estimation of
Normal distribution.
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L+(Aold, qold,Sold) andL(Anew)=L+(Anew, qnew,Snew),
L(Anew) ≤ L(Aold) holds. The proof for the update of B is
analogous.

3. EXPERIMENT

3.1. Setting

We conducted experiments to confirm the effectiveness of the
proposal. Since our method is, to the best of the author’s
knowledge, the first that can deal with unbounded interval-
valued elements, we investigate whether the proposal can well
handle unbounded interval-valued elements and improves the
performance. The evaluations use synthetic and real data.

For the synthetic data (Synth), we generated factor ma-
trices A and B whose sizes are I = J = 30, R = 6 using
a Gaussian with mean of 1.0 and precision of 0.3−2. Com-
puting their product and adding Gaussian noise with mean
0.0 and precision 0.1−2, yielded a matrix with Xsc whose
elements are all scalar. We prepared five data sets by divid-
ing the elements of Xsc into five, using 20% of the data as
a training set and the remaining 80% as a test set so that the
matrix contains many missing elements as would occur in real
scenarios. Note that test data are treated as missing elements
in training. Assuming the situation shown in Fig. 1, we con-
verted the elements in the training set whose value is larger
than 4.0 to the interval valued-element (4.0,∞) in chosen
20, 40, 60, 80% rows (excepting the first 3 logs). Intuitively,
the ratio corresponds to the ratio of imprecise information.

For the real data, we use Yelp Academic dataset (YA)3 in-
cluding users’ review scores of businesses (shops); they range
from 1.0 (min) to 5.0 (max). Using the review log of Montreal
and extracting users and businesses that appear more than 10
times, we construct a matrix with all scalar-valued elements;
its size is I = 166, J = 382. Similar to the synthetic data,
we prepared five data sets by dividing the data and using 80%
of the data as a training set and 20% as a test set. We convert
the elements whose value is equal to or larger than 3.0 to the
interval valued-element (3.0,∞) for chosen 20, 40, 60, 80%
users (excepting the first 3 logs).

We use test mean squared error (test MSE) as a perfor-
mance metric. Test MSE is defined as 1

|T |
∑

(i,j)∈T (xij −
x̂ij)

2, where T is the set of element indexes in the test and
| · | indicates the number of elements in the set. By com-
paring standard NMF [1], which handles only scalar-valued
elements, we investigate the effectiveness of the proposal.
Moreover, we also report the latent MSE for evaluating the
prediction of latent scalar values, which were hidden by
conversion into interval-valued elements. The proposal of-
fers two approaches to prediction: using x̂ij or ȳij (Eq.(9))
since the corresponding interval-valued elements (xLij , x

R
ij)

is available. When using ȳij , latent MSE is computed as
1
|T ′|

∑
(i,j)∈T ′(xij − ȳij)

2, where T ′ is the set of element

3https://www.yelp.com/academic_dataset

(a) Synth (b) YA

Fig. 4: Missing value prediction. Lower is better.

(a) Synth (b) YA

Fig. 5: Latent value prediction. Lower number is better.

indexes whose values are converted into interval-valued el-
ements. We compare the results of the two approaches and
NMF. The number of factors is set to 6 for Synth and to 2 for
YA in common based on preliminarily experiments.

3.2. Result

Figure 4 shows the results of missing value prediction. GIV-
NMF and NMF have competitive performance when the ratio
of converted users is small while GIV-NMF outperforms
NMF as the ratio increases. This indicates GIV-NMF well
handles the (unbounded) interval-valued elements and of-
fers improved performance. Figure 5 shows the results of
latent scalar value prediction. Similar to the above, both GIV-
NMF variants outperform NMF. GIV-NMF (using ȳij) shows
slightly better performance than its sibling. This implies the
use of the interval can contribute to improved performance.

4. CONCLUSION

In this paper, we proposed a probabilistic model for analyz-
ing the generalized interval valued matrix, a matrix that has
scalar-valued elements and bounded and unbounded interval-
valued elements. We provide the theoretical proof of the pro-
posed algorithm and confirmed its effectiveness by experi-
ments on synthetic and real world data. Future work is to
evaluate and to clarify how the length of the interval affects
performance since it reflects the certainty of information.
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