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ABSTRACT

Nonnegative matrix factorization (NMF) has been widely
used in machine learning and signal processing because of its
non-subtractive, part-based property which enhances inter-
pretability. It is often assumed that the latent dimensionality
(or the number of components) is given. Despite the large
amount of algorithms designed for NMF, there is little litera-
ture about automatic model selection for NMF with theoret-
ical guarantees. In this paper, we propose an algorithm that
first calculates an empirical second-order moment from the
empirical fourth-order cumulant tensor, and then estimates
the latent dimensionality by recovering the support union (the
index set of non-zero rows) of a matrix related to the empir-
ical second-order moment. By assuming a generative model
of the data with additional mild conditions, our algorithm
provably detects the true latent dimensionality. We show on
synthetic examples that our proposed algorithm is able to find
approximately correct number of components.

Index Terms— Nonnegative matrix factorization, Model
selection, Tensor method, Multiple measurement vector, Sup-
port union recovery

1. INTRODUCTION

In a nonnegative matrix factorization (NMF) problem, we are
given a data matrix V ∈ RF×N , and we seek non-negative
factor matrices W ∈ RF×K , H ∈ RK×N such that a cer-
tain distance between V and WH is minimized. To reduce
the data dimension and for the purpose of efficient computa-
tion, the integerK, which is said to be the latent dimensional-
ity or the number of components, is usually chosen such that
K(F + N) � FN . Since the publication of the seminar
paper [1] in 2000, NMF has been a popular topic in machine
learning [2] and signal processing [3]. There are many fun-
damental algorithms to approximately solve the NMF prob-
lem [1, 4, 5] with the implicit assumption that an effective
number of the latent dimensionality is known a priori.

Despite the practical success of these fundamental algo-
rithms, the estimation of the latent dimensionality remains
an important issue. For example, researchers may wonder
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whether we can achieve better approximation accuracy with
significantly less running time by selecting a better K as the
input of the algorithm. Unfortunately, there is generally little
literature discussing the model selection problem for NMF.
Moreover, the methods proposed in papers about detecting
latent dimensionality for NMF [6–9] either lack theoretical
guarantees or require rather stringent conditions on the gen-
erative model of data.

1.1. Main Contributions
We assume that each column v of the data matrix V =
[v1,v2, . . . ,vN ] ∈ RF×N is sampled from the following
generative model

v = Wh + z, (1)

where W = [w1,w2, . . . ,wK ] ∈ RF×K+ is the mixing ma-
trix (or the ground-truth non-negative dictionary matrix) and
we assume that rank(W) = K. h ∈ RK is a latent ran-
dom vector with independent coordinates1, and z ∈ RF is a
multivariate Gaussian random vector. z is assumed to be inde-
pendent with h. We write H = [h1,h2, . . . ,hN ] ∈ RK×N .
In the context of this generative model, our goal is to find the
number of columns of W from the observed matrix V. This
generative model can be viewed as a non-negative variant of
that for independent component analysis (ICA) [11].

For the data matrix V ∈ RF×N generated from the above
model, we first calculate an empirical second-order moment,
denoted as M̂2 ∈ RF×F , from the empirical fourth-order cu-
mulant tensor. We prove that M̂2 approximates its expecta-
tion, denoted as M2, well with high probability when N is
sufficiently large. We also show that M2 can be written as
M2 = M2X

∗, where X∗ ∈ RF×F contains exactly K non-
zero rows. Finally, we prove that under certain conditions, an
`1/`2 block norm minimization problem (cf. (27) to follow)
over M̂2 is able to detect the correct number of column of W
from the recovery of a support union.

Complete proofs are presented in the extended ver-
sion [12].

1.2. Notations
We use capital boldface letters to denote matrices and we use
lower-case boldface letters to denote vectors. We use aij

1Similar to that in [10], we will not require h to be non-negative.
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or [A]ij to denote the (i, j)-th entry of A. [N ] represents
{1, 2, · · · , N} for any positive integer N . For X ∈ RL×M
and any l ∈ [L], m ∈ [M ], we use xl, xm to denote the
l-th row and the m-th column of X, respectively. We write
VK := V(K , : ) as the rows of V indexed by K , and
VK := V ( : ,K ) denotes the columns of V indexed by K .
‖V‖1, ‖V‖2, ‖V‖∞, ‖V‖F represents the 1-norm, the spec-
tral norm, the infinity norm and the Frobenius norm of V, re-
spectively. Let V1 ∈ RF1×N and V2 ∈ RF2×N . We denote
by [V1; V2] the vertical concatenation of the two matrices.
Diag(w) represents the diagonal matrix whose diagonal en-
tries are given by w. The support of a vector x is denoted as
supp(x) := {i : xi 6= 0}. The support union of a matrix X
with N columns is defined as Supp(X) := ∪Nn=1supp(xn).

2. TENSOR METHODS

In this section, we calculate an empirical second moment M̂2

using a tensor method, and we prove that the empirical second
moment is close to its expectation M2 with high probability
when the sample size N is sufficiently large.

2.1. The Derivation of M2 and M̂2

Let v be a random vector corresponding to the generative
model (1) with E[hk] = 0 and E[zf ] = 0 for k ∈ [K], f ∈
[F ]. We have the following lemma which says that M2 can
be written in a nice form.

Lemma 1 ( [13, 14]) Define

M4 := E[v ⊗ v ⊗ v ⊗ v]− T , (2)

where for all i, j, l,m ∈ [F ], [v⊗v⊗v⊗v]ijlm = vivjvlvm
and T is the fourth-order tensor with

[T ]ijlm := E[vivj ]E[vlvm]+E[vivl]E[vjvm]+E[vivm]E[vjvl].
(3)

Let2 κk = E[h4k]− 3E[h2k] for each k ∈ [K]. Then

M4 =

K∑
k=1

κkwk ⊗wk ⊗wk ⊗wk. (4)

In addition, we have that for any s, t ∈ RF ,

M2 :=M4(I, I, s, t) =

K∑
k=1

κk(sTwk)(tTwk)wkw
T
k , (5)

where for matrices V1 ∈ RF×F1 ,V2 ∈ RF×F2 ,V3 ∈
RF×F3 ,V4 ∈ RF×F4 , M4(V1,V2,V3,V4) is defined as
the tensor whose (i1, i2, i3, i4)-th entry is∑
j1,j2,j3,j4∈[F ]

[M4]j1,j2,j3,j4 [V1]j1,i1 [V2]j2,i2 [V3]j3,i3 [V4]j4,i4 .

2It is implicitly assumed in [14] that Var[hk] = 1, and thus κk =
E[h4k]− 3.

We calculate M̂2 from the sample matrix V. Let

M̂4 :=

∑N
n=1 vn ⊗ vn ⊗ vn ⊗ vn

N
− T̂ , (6)

where T̂ is the empirical approximation tensor for T . Denot-
ing M̂2 as

M̂2 = M̂4(I, I, s, t). (7)

We have that E[M̂2] = M2. For simplicity, we take s = t =
e ∈ RF , where e is the vector of all ones. For any k ∈ [K],
because wk 6= 0, we have that eTwk > 0. In addition, if
κk 6= 0, let αk = κk(eTwk)2, we have αk 6= 0 and

M2 =

K∑
k=1

αkwkw
T
k . (8)

Moreover, now we have that for i, j ∈ [F ],

[M̂2]ij =

F∑
l=1

F∑
m=1

[M̂4]ijlm. (9)

2.2. Bounding the Distance between M2 and M̂2

Let E = M̂2 −M2, and assume that all the coordinates of
h are identically and independently distributed with mp :=
E[hpk] for all k ∈ [K], p ∈ N. In particular, we assume that
m1 = 0 and m4 6= 3m2. Let M8 = m8 +m7m1 +m6m2 +
m6m

2
1 + . . .+m4

2 +m3
2m

2
1 +m2

2m
4
1 +m2m

6
1 +m8

1, M4 =
m4 +m3m1 +m2

2 +m2m
2
1 +m4

1 and M = max{M8,M
2
4 }.

Denote Wmax as Wmax := maxf,k wfk. Suppose that z ∼
N (0, σ2I) and let ∆ = max{σ, 1}. From the following
lemma, we can see that if N is sufficiently large, the distance
between M2 and M̂2 (with respect to Frobenius norm) is suf-
ficiently small with high probability.

Lemma 2 For any δ ∈ (0, 1), we have that with probability
at least 1− δ,

‖E‖F <
117
√

70MW 4
maxK

4∆4F 3

√
δN

. (10)

3. SUPPORT UNION RECOVERY

In this section, we first show that M2 can also be written as
M2 = M2X

∗, where the cardinality of the support union
of X∗ is |Supp(X∗)| = K. This motivates us to consider
approaches for support union recovery or multiple measure-
ment vectors [15–19]. We then present theoretical guarantees
for support union recovery for an `1/`2 block norm minimiza-
tion problem (cf. (20) to follow).

3.1. Another Formulation of M2

Recall that from (8), we have

M2 =

K∑
k=1

αkwkw
T
k = WDiag(α)WT , (11)
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where α := [α1; . . . ;αK ] ∈ RK . We know that α con-
tains all non-zero entries if m4 6= 3m2. Because we as-
sume that rank(W) = K, there exists an index set K for
rows of W such that |K | = K and rank(WK ) = K. Let
R ∈ RK×(F−K) be the matrix such that

RT = WK c(WK )−1. (12)

Let Π be the permutation matrix corresponding to the index
set K . We have that

M2 = WDiag(α)WT = WDiag(α)[WT
K ,WT

K c ]Π

(13)

= WDiag(α)[WT
K ,WT

K R]Π (14)

= WDiag(α)WT
K [I,R]Π (15)

= M2Π

[
I R
0 0

]
Π = M2X

∗, (16)

where X∗ := Π

[
I R
0 0

]
Π. Note that the number of non-

zero rows in X∗ is exactly K, i.e., |Supp(X∗)| = |K | = K.

3.2. Theoretical Results for Support Union Recovery
For 1 ≤ a ≤ b < ∞ and any matrix A ∈ Rm×n, the `a/`b
block norm of A is defined as follows:

‖A‖`a/`b =

(
m∑
i=1

‖ai‖ab

)1/a

, (17)

where ai is the i-th row of A. In particular, we define

‖A‖`∞/`2 = max
i∈[m]

‖ai‖2. (18)

Assume that an observed data matrix Y ∈ Rm×n can be writ-
ten as

Y = AB∗ + L, (19)

where A ∈ Rm×p is the dictionary matrix, B∗ ∈ Rp×n is
block sparse. Let b∗i be the i-th row of B∗, we write the
support union of B∗ as S := Supp(B∗). Considering the
following `1/`2 block norm minimization problem,

min
B∈Rp×n

1

2
‖Y −AB‖2F + λ‖B‖`1/`2 . (20)

Let b∗min = mini∈S ‖b∗i ‖2. According to Lemma 2 in [18],
we can prove the following lemma which ensures the recovery
of support union under certain conditions.

Lemma 3 Assume that AT
SAS is invertible and let Dmax =

‖
(
AT
SAS

)−1 ‖∞ > 0. If there exists a fixed parameter γ ∈
(0, 1], such that

‖AScAS
(
AT
SAS

)−1 ‖∞ ≤ 1− γ, (21)

andDmax(λ+‖AS‖1‖L‖`∞/`2) ≤ 1
2b
∗
min, ‖ASc‖1‖L‖`∞/`2 ≤

λγ
2 , then there is a unique optimal solution B̂ for (20) such

that Supp(B̂) = S. Moreover, B̂ satisfies the bound

‖B̂−B∗‖`∞/`2 ≤ Dmax(λ+ ‖AS‖1‖L‖`∞/`2) ≤ 1

2
b∗min.

(22)

4. THE MAIN THEOREM

Recall that from Section 3.1, we obtain

‖X∗‖`∞/`2 =
√

1 + ‖R‖2`∞/`2 =
√

1 + r2max, (23)

where rmax = maxk ‖rk‖2 with rk being the k-th row of R.
In addition, let rmin = mink ‖rk‖2. We have

min
i∈K
‖x∗i ‖2 =

√
1 + r2min, (24)

where x∗i is the i-th row of X∗. Let

W1 := WK Diag(α)WTWDiag(α)WT
K , (25)

W2 := WK cDiag(α)WTWDiag(α)WT
K . (26)

We consider the `1/`2 block norm minimization problem over
M̂2.

min
X∈RF×F

1

2
‖M̂2 − M̂2X‖2F + λ‖X‖`1/`2 . (27)

We have the following main theorem which guarantees the
discovering of the correct K.

Theorem 4 Let λmin (W1) := Cmin > 0, where λmin (W1)
is the the minimal eigenvalue of W1. LetDmax := ‖W1‖∞ >
0. Suppose there is a γ ∈ (0, 1] such that

‖W2W
−1
1 ‖∞ ≤ 1− γ. (28)

Let3

ζ = min{
√
Cmin

2
,
‖M2‖1√

F
, ζ1, ζ2}. (29)

For any δ ∈ (0, 1), let

lλ =
936
√

70MW 4
maxK

4∆4F 3

√
δN

‖M2‖1
(

1 +
√
F (1 + r2max)

)
γ

(30)
and

uλ =
2
√

1 + r2min

(4 + γ) (Dmax + 6‖M2‖21D2
max)

. (31)

Then if

N ≥ 958230MW 2
maxK

8∆8F 6

δζ2
, (32)

3ζ1 = γ/
(
6
√
F‖M2‖1Dmax(1 + 8‖M2‖21Dmax)

)
,

ζ2 =
γ
√

1+r2min

4(4+γ)‖M2‖1
(
1+
√
F (1+r2max)

)
(Dmax+6‖M2‖21D2

max)
.
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Algorithm 1 Model selection for NMF by support union re-
covery

Input: Data matrix V ∈ RF×N , λ > 0, ε > 0
Output: The estimated value of K, denoted as K̂
1) Calculate M̂2 from (35).
2) Obtain X̂ by optimizing (27).
3) K̂ := |{f ∈ [F ] : ‖x̂f‖2 > ε}|.

and
lλ ≤ λ ≤ uλ, (33)

we have that with probability at least 1 − δ, there exists a
unique optimal solution X̂ for (27) such that Supp(X̂) = K .
In addition, we have the error bound

‖X∗ − X̂‖`∞/`2 ≤
√

1 + r2min

2
. (34)

If the conditions of Theorem 4 are satisfied, the optimal so-
lution X̂ for (27) satisfies that |Supp(X̂)| = K, and thus we
can count the number of non-zero rows of X̂ to obtain the true
K. The whole procedure of our algorithm is summarized in
Algorithm 1.

5. NUMERICAL RESULTS

To demonstrate the efficacy of Algorithm 1 for estimating K,
we perform numerical simulations on synthetic datasets. We
need to obtain M̂2 in the first step of Algorithm 1. The time
complexity of calculating M̂4 is O(F 4N). However, note
that we do not need to calculate M̂4 explicitly before calcu-
lating M̂2. Let pn =

∑F
f=1 vf,n and qn = p2n for n ∈ [N ].

We can show that [12]

M̂2 =
VDiag(q)VT

N
−

(∑N
n=1 qn
N2

VVT + 2
VppTVT

N2

)
.

(35)
The time complexity for calculating M̂2 is reduced toO(F 2N).
In the second step of Algorithm 1, we use CVX [20] to obtain
a solution X̂ for (27). ε is set to be 10−6 in the third step of
Algorithm 1.

5.1. Synthetic Datasets

We fix K = 10 and vary F between 20 and 50. We vary
the number of samples N from 100 to 10000. We set the
dictionary matrix W ∈ RF×K as [IK ; τWc], where IK is
the identity matrix in RK×K and Wc ∈ R(F−K)×K is a
random non-negative matrix generated from the command
rand(F-K,K) in Matlab. τ > 0 is properly chosen such
that ‖W2W

−1
1 ‖∞ < 1 (cf. (28)). Each entry h of H is

generated from an exponential distribution4 Exp(u) with
parameter u = 1, and then is centralized by h ← h − 1

u .

4Exp(u) is the function x 7→ u exp(−ux)1{x ≥ 0}.
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Fig. 1. Estimated number of components K with different F
for exponential distribution. The error bars denote one stan-
dard deviation away from the mean.
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Fig. 2. Estimated number of components and relative error
with different λ for the swimmer dataset.

The regularization parameter λ is set to be 10. The data
matrix V = WH + Z and each entry of the noise matrix
Z is sampled from a Gaussian distribution N (0, σ2) with
σ = 0.01. For each setting of the parameters, we generate 20
data matrices V independently. From Fig. 1, we observe that
when F = 20, the algorithm cannot detect the true K until
N is sufficiently large (e.g., N ≥ 6 × 103). When F = 50,
we need a smaller τ such that ‖W2W

−1
1 ‖∞ < 1, and the

algorithm works well even when the sample size is relatively
small.

5.2. The Swimmer Dataset

We perform experiments on the well-known swimmer [21]
dataset, which is widely used for benchmarking NMF algo-
rithms. The swimmer dataset we use contains 256 binary im-
ages (20-by-11 pixels) which depict figures with four limbs,
each can be in four different positions. The latent dimension-
ality of the corresponding data matrix is 16. From the regu-
larization path for this dataset presented in Fig. 2, we observe
that the estimated latent dimensionality K̂ is always 14 when
10−5 ≤ λ ≤ 109. In addition, the relative error ‖M̂2−M̂2X̂‖F

‖M̂2‖F
is close to 0 when λ ≤ 104 and becomes intolerably large
(larger than 0.75) when λ ≥ 108. Therefore, a reasonable
estimate for the latent dimensionality is 14, which is close to
the true latent dimensionality.
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