
SEQUENTIAL STRUCTURED DICTIONARY LEARNING FOR BLOCK SPARSE
REPRESENTATIONS

Abd-Krim Seghouane and Asif Iqbal

Department of Electrical and Electronic
Engineering, The University of Melbourne

Karim Abed-Meraim

PRISME Laboratory,
The University of Orléans, France

ABSTRACT

Dictionary learning algorithms have been successfully ap-
plied to a number of signal and image processing problems.
In some applications however, the observed signals may have
a multi-subpsace structure that enables block-sparse signal
representations. Based on the observation that the observed
signals can be approximated as a sum of low rank matrices,
a new algorithm for learning a block-structured dictionary
for block-sparse signal representations is proposed. It’s de-
rived via sequential penalized low rank matrix approximation,
where a block coordinate descent approach is used to esti-
mate the matrix pairs that form the different low rank matrix
approximations. Experimental results on synthetic and stan-
dard gray-scale images illustrating the performance of the
proposed algorithm are provided.

Index Terms— Dictionary learning, sequential learning,
block sparsity, low rank matrix approximation.

1. INTRODUCTION

Sparse signal modeling has attracted a lot of research inter-
est in recent times because of its wide range of applications.
It has been successfully applied to magnetic resonance im-
age reconstruction [1], low-dose X-ray CT reconstruction [2],
and functional magnetic resonance imaging (fMRI) data anal-
ysis [3, 4, 5, 6]. Sparse signal modeling now generally refers
to overcomplete dictionary learning as this leads to improved
performance results by adapting a dictionary to fit the sig-
nals. Sparse coding and dictionary update constitute the two
main building blocks of most overcomplete dictionary learn-
ing algorithms. The former seeks sparse solutions xi ∈ RK ,
i = 1, ..., N to the undetermined systems of linear equa-
tions yi = Dxi, where D ∈ Rn×K is a given dictionary and
yi ∈ Rn are observation signals with n < K < N , while the
latter aims to learn the overcomplete dictionaryD.
In some applications, the observed signals may have a multi-
subspace structure that can be further exploited. This is, for
example, the case in face recognition or motion segmentation
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[7] where the entire set of signals Y ∈ Rn×N can be thought
as lying in multiple low-dimensional subspaces characteriz-
ing the different classes of interest. In these cases, the over-
complete dictionary learning algorithms that uses the `0 or
`1 norms, for sparse coding, treat the atoms in the dictionary
independently, ignoring the underlying subspace structure in
the signals. For such signals, instead of looking for the spars-
est representation, it may be more appropriate to look for the
best representation in a union of a small number of subspaces.
Several methods have been proposed to learn block sparse
representations for a set of signals given a block-structured
dictionary; among them one can cite the block orthogonal
matching pursuit (BOMP) [8] or the group lasso [9]. On the
other hand very few algorithms have been proposed for over-
complete block-structured dictionary learning. The aim of
these algorithms is to learn a dictionary that provides adapted
block-sparse representations for a set of signals. In [10], an
extension of the K-SVD [11], (named Block-KSVD or BK-
SVD for short) was proposed for learning a block-structured
dictionary for block-sparsifying a given set of signals. The al-
gorithm doesn’t require prior block structure knowledge, but
automatically learns it given the maximal number of atoms
per group. It is an iterative algorithm that alternates between
updating the block structure of the dictionary using the ag-
glomerative clustering algorithm [12] and updating the dic-
tionary atoms using an extension of [11] to better fit the data.
The proposed extension, BK-SVD, is itself an iterative al-
ternating minimization procedure that alternates between a
block-sparse coding stage solved using BOMP and a dictio-
nary update stage solved using a singular value decomposi-
tion (SVD). As for the K-SVD, although this iterating meth-
ods generally can guarantee that the dictionary learning ob-
jective function value is decreasing, the generated sequence
of iterates may diverge [13]. Therefore, there is a need for
a new block-structured dictionary algorithm that should be
computationally efficient and generates better performance.

2. BACKGROUND

Given a collection of signals Y = {y1, y2, ..., yN} ∈ Rn×N
and a sparsity constraint s, dictionary learning algorithms
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seek to find a dictionary D ∈ Rn×K and a sparse represen-
tation matrix X ∈ RK×N such that Y ' DX or alternatively
||Y − DX||F ≤ ε. They achieve this objective by attempting
to optimize the following cost function

min
D,X
||Y− DX||2F s.t. ‖ xi ‖0≤ s, ∀ 1 ≤ i ≤ N,

and ‖ dm ‖2= 1, ∀ 1 ≤ m ≤ K,(1)

where dm and xi denote the mth column of the dictionary D
and ith column of the sparse code matrix X. Most algorithms
for dictionary learning attempt to approximate (1) using an
alternating optimization scheme which scheme starts with a
sparse coding stage to optimize for X, given a fixed D

X = min
X
||Y− DX||2F s.t. ‖ xi ‖0≤ s, ∀ 1 ≤ i ≤ N. (2)

Approximate solutions of (2) can be found in polynomial time
using either greedy strategies, such as orthogonal matching
pursuit (OMP), or by replacing the `0−norm by its convex re-
laxation; the `1−norm. This follows with a dictionary update
stage to optimize for D given a fixed X

D = arg min
D
‖ Y− DX ‖2F s.t. ‖ dm ‖2= 1. (3)

Various methods have been proposed for the dictionary up-
date stage; among them, least squares [14], maximum like-
lihood [15], using a coherence constraint [16], the use of a
single SVD [17] or multiple SVDs’ [11] on a reduced error
matrix to generate the atom updates as follows

{dk, x̃k} = arg min
dk ,̃xrowk

‖ERk − dkx̃rowk ‖2F , (4)

where ERk = EkIwk
with Ek = Y−

∑K
i=1,i6=k dixrowi and Iwk

theN×|wk| submatrix of theN×N identity matrix obtained
by retaining only those columns whose index numbers are in
wk defined by wk = {i|1 ≤ i ≤ N ; xrowk (i) 6= 0}. Along
with the atom dk in (4), the corresponding nonzero coeffi-
cients x̃rowk = xrowk Iwk

; where xrowk represents the kth row of
X, are also updated. ERk instead of Ek is used to preserve the
sparsity pattern in X obtained in the sparse coding stage.
Assuming that the atoms of the dictionary D can be parti-
tioned into blocks; in [10] an extension of the K-SVD that
enables block-sparse representations of a set of signals Y is
proposed. Given a dictionary D = [D1, ...,DJ ] with a known
J blocks structure1, each of which consists of pj atoms; i.e.;
Dj ∈ Rn×pj , j = 1, ..., J , pj < n, BK-SVD [10] solves the
block formulation of (1)

min
D,X
||Y− DX||2F s.t. ‖ xi ‖0,p≤ s, and ‖ dm ‖2= 1, (5)

where ‖ . ‖0,p, in this case, is the group `0−norm that counts
the number of nonzero blocks as defined by B ∈ RK ; the

1Block structure is defined as the atom-block correspondence.

vector of block assignments for the atoms of D. Similar to
[11], BK-SVD uses an iterative alternating scheme to solve
(5) where each iteration uses a block coordinate descent ap-
proach composed of two stages. A sparse coding stage which
uses BOMP to solve (5) for fixed D as

min
X
||Y− DX||2F s.t. ‖ xi ‖0,p≤ s. (6)

Similar to the K-SVD, the blocks in D are updated sequen-
tially, along with the corresponding nonzero coefficients in
X. For every block j = 1, ..., J , the update uses the error
matrix Rj = Y−

∑J
i=1,i6=j DiXi of the signals excluding the

contribution of jth block Dj . The corresponding sparse code
Xj ∈ Rpj×N is also updated along Dj by only using the col-
umn of RRj = RjIwj

associated with the nonzero columns of
Xj , i.e. X̃j = XiIwj

. Both Dj and Xj are updated by find-
ing the matrix DjXj of rank pj that best approximates RRj by
minimizing ||RRj − DjX̃j ||F using the SVD. Thus, Dj is up-
dated using the left pj singular vectors, and Xj as the right pj
singular vectors times the associated singular values.

3. PROPOSED APPROACH

The design of the proposed block-structured dictionary learn-
ing algorithm for block-sparse signal representation is derived
by using a variant of (5) where the `2−norm ‖ . ‖2 [9][18]
group sparse penalty2 is used instead of the ‖ . ‖0,p to give

min
D,X

N∑
i=1


∥∥∥∥∥∥yi −

J∑
j=1

Djxij

∥∥∥∥∥∥
2

2

+ λ

J∑
j=1

√
pj ‖ xij ‖2

 (7)

and ‖ dm ‖2= 1 ∀ 1 ≤ m ≤ K,

where √pj is used to rescale the penalty with respect to the
dimensionality of the vector xij [9]. The `2−norm achieves
shrinkage as the `1−norm does, but works with blocks of
coefficients. The cost function (7) provides a model where
some blocks of coefficients are exactly zero making (7) a
good candidate convex relaxation or variant of (5), suitable
for the design of a block-structured dictionary learning algo-
rithm. The cost (7) is an extension of the objective used in
[19][20][21][22] but adapted for block sparse representation.
From (7), we may be tempted to adopt an iterative alternating
minimization scheme to solve (7), by minimizing over one
variable while keeping the other one fixed in a similar way
as it was done for the minimization of (5) in [10] where the
BOMP was used instead of the group lasso [9].
However, we adopt a different approach which leads to a more
efficient algorithm because it avoids using the SVD on a big
matrix in the algorithms iterations. It is based on rewrit-
ting the first term of (7) as ‖Y − DX‖2F and observing that
the matrix DX can be expressed as a sum of block sparse

2also known as the `12−norm in signal processing
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low rank matrices or
∑J
i=1 DjXj , where Xj is a matrix with

some full sparse columns associated with the block dictionary
Dj . This is a natural block-structured representation of the
dataset Y because it separates out contributions of the various
dictionary blocks to represent Y. Furthermore, to favor the
within block incoherence and unit `2−norm requirement on
the atoms, we introduce the block ortho-normality constraint
into the model. A similar constraint is used in [10] as well.
Thus we can rewrite the optimization problem (7) as follows

J∑
j=1

min
Dj ,Xj

‖Ej − DjXj‖2F + λ

N∑
i=1

√
pj ‖ xij ‖2 (8)

s.t. D>j Dj = Ipj

where xij is the ith column of Xj , Ej = Y−
∑J
i=1,i6=j DiXi,

and Ipj is a pj dimensional identity matrix. In (8), each col-
umn of Xj is treated as a group and ‖ xij ‖2= 0 is equivalent
to setting the ith column of Xj as zeros. Thus the ‖ . ‖2
penalty encourages columnwise sparsity on the Xj matrices.

Algorithm 1: The proposed Sequential Structured
Dictionary Learning Algorithm.

Input: Y, Dini = [D1,D2, . . . ,DJ ], J, ε1, λ, B
1 Ortho-normalize blocks of Dini, set ε2 = 0.01
2 while ‖ Dm − Dm−1 ‖F / ‖ Dm−1 ‖F≥ ε1 do
3 for j = 1:J do
4 Ej = Y−

∑J
i=1,i6=j DiXi,

5 while ‖ Dtj − Dt−1j ‖F≥ ε2 do
6 Sparse Coding:
7 for i = 1:N do
8 xtij =(

1− λ
√
pj

2‖D>j
t−1eij‖2

)
+

D>j
t−1

eij

9 Dictionary Update:
10 Compute the SVD of EjXt

>
j = UΛV>

11 Update Dtj = UV>
Output: Dj ,Xj

Result: D and X

3.1. Algorithm Derivation

The variable Dj and Xj in (8) are obtained by a block coor-
dinate descent method. For each j = 1, ..., J , the proposed
algorithm has two stages, a sparse coding stage, where (8) is
optimized with respect to Xj while keeping Dj fixed, and a
dictionary update stage, where (8) is optimized with respect
to Dj with Xj fixed. The algorithm updates the factors of the
various low rank matrices one by one.

The sparse coding stage is defined by

min
Xj

‖Ej − DjXj‖2F + λ

N∑
i=1

√
pj ‖ xij ‖2 (9)

which is equivalent to

min
xij

N∑
i=1

‖(eij)− Djxij‖22 + λ

N∑
i=1

√
pj ‖ xij ‖2 . (10)

where eij is the ith column of Ej . This step can be solved
with an extension of the soft thresholding approach [9], which
after some algebraic manipulations, gives

xij =

(
1−

λ
√
pj

2 ‖ D>j eij ‖2

)
+

D>j eij (11)

and corresponds to a vector soft-thresholding rule.
The dictionary update stage is found by solving the following
minimization problem

min
Dj

‖Ej − DjXj‖2F s.t. D>j Dj = Ipj (12)

which is an orthogonal Procrustes problem [23]. The solution
is Dj = UV>, where U and V are obtained from the SVD of
EjX>j = UΛV>, where U is n× pj and V is pj × pj .

4. EXPERIMENTAL RESULTS

4.1. Synthetic Experiment

In this section, we compare the signal representation perfor-
mance of the aforementioned algorithms when the data, under
consideration, is block-sparse. Consider a generating dictio-
nary D0 ∈ R50×120 with normally distributed entries and a
constant block-size p = 3 (each block with 3 atoms). The
block structure (atom-block correspondence) is assumed to
be known and set as B = [1, 1, 1, 2, 2, 2, . . . , J, J, J ] with
J = 40 total blocks. Each entry of B ∈ R120 represents the
atom-block correspondence. We ortho-normalize every sub-
block to yield J (p-dimensional) subspaces. Next we generate
N = 2000 block-sparse signals Y via linear combination of
s D0 blocks with coefficients from U(−0.5, 0.5). The result-
ing signal matrix Y ∈ R50×N was then corrupted by additive
white Gaussian noise (AWGN), leading to the noisy signal
matrix Yn with a specific signal to noise ratio (SNR). This
noisy dataset was passed to K-SVD, BK-SVD, and the pro-
posed dictionary learning method for decomposition. All al-
gorithms were iterated 30 times to learn the dictionaries3.
Starting with a random initial dictionary, the entire learning
process was repeated 100 times, with multiple block-sparsity
parameter s = [2, 3, 4, 5] and SNR levels of [−10,−5, 0] dB.

3The learning process would stop once the relative dictionary change fell
below ε1 = 0.01, i.e.,‖ Dm − Dm−1 ‖F / ‖ Dm−1 ‖F> ε1.
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Table 1. Mean normalized reconstruction error over 100 trials, for multiple signal to noise ratios and signal block-sparsity
levels s. λ is the block-sparsity controlling parameter and ŝ is the final block-sparsity level of the representation.

SNR in dB -10 -5 0

s 2 3 4 5 2 3 4 5 2 3 4 5

K-SVD 2.691 2.879 2.991 3.058 1.562 1.647 1.698 1.729 0.940 0.964 0.978 0.987
BK-SVD 2.316 2.543 2.702 2.819 1.406 1.498 1.567 1.619 0.913 0.938 0.949 0.960
Proposed 1.350 1.275 1.328 1.394 0.970 0.975 0.971 0.980 0.801 0.807 0.798 0.789

ŝ 2.25 3.22 4.17 5.08 2.17 3.19 4.20 4.99 2.11 3.14 4.14 4.94

λ 0.96 1.07 1.12 1.15 0.60 0.66 0.68 0.71 0.42 0.45 0.47 0.49

Table 2. Run-time for a single trial in seconds.

SNR 0 dB

s 2 3 4 5

K-SVD 9.9 10.8 12.5 13.7
BK-SVD 4.8 6.4 8.3 10.2
Proposed 3.6 4.3 3.5 3.5

Table 3. Mean NRE results for all algorithms over 10 trials.
s the block-sparsity parameter, the best results are in BOLD.

K-SVD BK-SVD Proposed

s 2 3 2 3 2 3

Baboon 0.199 0.279 0.181 0.202 0.177 0.187

Barbara 0.196 0.254 0.138 0.216 0.131 0.133

Boat 0.143 0.255 0.113 0.158 0.107 0.104

House 0.169 0.273 0.096 0.191 0.074 0.070

Lena 0.141 0.223 0.113 0.105 0.075 0.072

Cameraman 0.399 0.460 0.440 0.448 0.391 0.414

For every trial, we calculated the normalized reconstruction
error as ‖Y− D X‖F /‖Y‖F . The mean results are outlined
in Table 1. For a fair comparison, the block-sparsity control-
ling parameter λ was chosen such that the final block-sparsity
ŝ in X matches the signal block-sparsity level s, where the fi-
nal block-sparsity is calculated using ‖ X ‖0 /(N × p). The
selected λ and the respective final block-sparsity level ŝ are
also provided in Table 1. The results show that the proposed
algorithm was able to outperform both K-SVD and BK-SVD
algorithms over every SNR and block-sparsity level. Further-
more, the run times over a single trial for all algorithms are
also shown in Table 2.

4.2. Experiment on Real Images

Here, we evaluate the algorithms performance using gray-
scale images. Starting with a standard gray-scale image, we
extracted all non-overlapping 8× 8 patches, vectorized them,

and placed them as column vectors to generate a signal ma-
trix Y ∈ R64×N . All except ’boat’ image were of size 512×
512 pixels. The pixel values were normalized to stay be-
tween [0, 1]. Starting with a randomly initialized dictionary
D ∈ R64×96 with `2−normalized columns, we iterated K-
SVD, BK-SVD and the proposed algorithms 50 times to learn
the dictionaries. For BK-SVD and the proposed algorithms,
we assume that the dictionary block structure is known, i.e.,
B = [1, 1, 1, 2, 2, 2, . . . , J, J, J ] with J = 32 total blocks and
p = 3 atoms per block. Furthermore, block-sparsity parame-
ter for BK-SVD was set to s and the sparsity parameter for K-
SVD was set to s × p. Whereas, for the proposed algorithm,
we tried multiple values for λ and selected the ones giving
best performance in terms of normalized reconstruction error
as defined next. Once the learning process was complete, we
generated a sensing matrix A ∈ R16×64 as outlined in [24],
and used it to compress the image patch data and the learned
dictionary atoms from 64 to 16 dimensions. Using the com-
pressed data and dictionaries, we found s block-sparse solu-
tion for BK-SVD and proposed algorithm, whereas, for K-
SVD, we found a s × p sparse solution. Using the resulting
sparse approximations, and the uncompressed image data and
dictionaries, we calculated the normalized reconstruction er-
ror (NRE) for s = [2, 3]. This entire process was repeated
10 times and the mean NRE results for all algorithms are pre-
sented in Table 3. Here it is evident that the proposed algo-
rithm was able to achieve the lowest NRE for all the images.

5. CONCLUSION

A new algorithm for learning block-structured dictionary for
block-sparse signal representations is proposed. It is obtained
by exploiting the observation that the observed data matrix
can be approximated by a sum of low rank matrix approxi-
mations. The proposed algorithm is obtained via sequential
penalized low rank matrix approximation with a block spar-
sity promoting penalty. Within this algorithm a block coordi-
nate descent approach is adopted for updating both the block
sparse codes and the associated block dictionaries with sim-
ple closed form solutions in both stages. The experimental
section highlights the superior performance of the proposed
algorithm compared to other state of the art algorithms.
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