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ABSTRACT

In this paper, the problem of detecting freeway accidents in
real–time based on speed readings from spatially distributed
road sensors of variable accuracy is addressed. To ensure
robust decision–making, a novel two–stage approach is pro-
posed. Specifically, in the first stage, each sensor generates
decisions using a Bayesian quickest change detection frame-
work. In the second stage, individual sensor decisions are
aggregated via an optimal stopping approach that optimizes
the tradeoff between the costs of aggregation and misclassi-
fication. Evaluation of the proposed two–stage approach on
a real–world traffic dataset collected from the I405 freeway
that passes through the Los Angeles County demonstrates im-
provements up to 65.2% and 87.2% in average detection de-
lay and probability of false alarm, respectively, as compared
to the state–of–the–art.

Index Terms— Intelligent transportation, collision detec-
tion, optimal stopping theory, Bayesian quickest change de-
tection, sequential detection

1. INTRODUCTION

Traffic accidents in existing transportation networks are char-
acterized by a high fatality rate [1], with both health and cost
impacts [2]. Since it may be impossible to prevent traffic
accidents from happening altogether, early freeway accident
detection has always been desirable. With the emergence
of novel sensor network technologies that provide real–time
high–fidelity spatiotemporal speed readings about current
traffic conditions, real–time accident detection may at last be
feasible [3]. However, existing methods either make assump-
tions about the transportation infrastructure that are currently
unsupported, do not explicitly model detection delay and/or
false alarm rate, or require knowledge of the relationship
between traffic variables and accidents [4–9]. More impor-
tantly, the high false alarm rates of the state–of–the–art [8,10],
requires robust accident detection schemes to guarantee min-
imum detection delay without sacrificing detection accuracy.

In our prior work [11,12], we proposed a Bayesian quick-
est change detection framework to optimally detect accident

time in near–real time based on speed sensor readings. With-
out a proper framework to aggregate individual sensor deci-
sions, however, we relied on naive schemes that (i) assume
individual sensor decisions are error–free, (ii) make use of
all sensor decisions indiscriminately, and (iii) do not account
for the misclassification cost of the final decision. Advanced
methods, such as ensemble learning [13, 14], impose re-
strictions on the base classifiers to operate on the same data
stream, and put emphasis on detection accuracy alone, unlike
our problem setting, where the time–to–detection is equally
important. At the same time, distributed detection [15],
where decisions are generated from sensors and subsequently
processed at a fusion center to reach consensus, has been
well studied [15, 16], with optimum fusion rules obtained
under both conditional independent [15] as well as statis-
tically correlated observations [17, 18]. Decision involving
unknown signal/noise statistics, and possibly sensors with
correlated observations has also been investigated [19–21].
General results about distributed detection under the assump-
tion that neighboring sensors can communicate with each
other [22, 23] are also available. In contrast to existing en-
semble learning and distributed detection methods, our goal
is to derive a framework to maximize freeway accident de-
tection accuracy while minimizing the time–to–detection by
optimally integrating sensors’ local decisions in an online
fashion and at the same time accounting for their individual
level of accuracy.

In this work, we address the limitations of state–of–the–
art by proposing a two–stage approach that aggregates in-
dividual sensor decisions (generated through our Bayesian
quickest change detection framework [11, 12]) online based
on optimal stopping theory principles. Specifically, at each
time step, the proposed framework inspects the accuracy of
each sensor, and the costs of aggregation and misclassifica-
tion of the final decision, to decide whether to make a deci-
sion or continue aggregating individual sensor decisions. On
real–world speed data, our approach improves average detec-
tion delay and probability of false alarm by up to 65.2% and
87.2%, respectively as compared to the state–of–the–art on (i)
inferring accident start time [8], and (ii) change point detec-
tion in time–series [24], and (iii) our own prior work [11,12].
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2. BACKGROUND

We consider a freeway consisting of a set L of spatially dis-
tributed sensors. Each sensor si ∈ L measures the aver-
age speed of passing vehicles to generate a sequence {Y ik}
of speed readings over discrete time indices k ∈ {1, 2, . . . }
from which a sequence of accident sensitive features (ASFs)
{Zik} are derived. At some random time ν, an accident oc-
curs, which changes the distribution of {Zik}.

In our prior work [11, 12], we have devised a Bayesian
quickest change detection framework based on the objec-
tives of average detection delay da(τ) , E{(τ − ν)+},
where x+ = max(0, x), and probability of false alarm
PFA(τ) , P (τ < ν), i.e., probability of false detection
of an accident, where τ denotes the time at which we de-
clare that an accident has happened (referred to as stopping
time in decision theory [25]), and ν is the actual accident
time. The goal is to select a stopping time τ on the ASFs
sequence {Zik}, at which to declare an accident, such that
da(τ) is minimized subject to a constraint γ ∈ (0, 1) on
PFA(τ), i.e., minτ da(τ) s.t. PFA(τ) ≤ γ. The so-
lution to this optimization problem is the optimal strategy
τoptimal = inf

{
k ≥ 0 | πik ≥ (1− γ)

}
, where πik = P (ν 6

k|Zi1, . . . , Zik) represents the a posteriori probability at time
k of sensor si. For implementation convenience, we con-
sider the log–likelihood ratio gik = log

(
πi
k

1−πi
k

)
, a monotone

non–decreasing function of πik, which leads to:

τoptimal = inf
{
k ≥ 0 | gik ≥ δ∗

}
, δ∗ = log

(
1− γ
γ

)
. (1)

In [11, 12], we have shown that the pre– and post–accident
distribution of the ASFs sequence is Gaussian, and accident
time ν has a zero modified geometric distribution with param-
eters ρ and π, resulting in the following recursive formula:

gik = log(ρ+ eg
i
k−1)− log(1− ρ) + log

(
σ0
σ2
1

)
+

(Zik − µ0)2

2σ2
0

− (Zik − µ1)2

2σ2
1

, gi0 = log

(
π

1− π

)
, (2)

where Zi1, Z
i
2, ..., Z

i
ν−1 are distributed as N (µ0, σ

2
0), while

Ziν , Z
i
ν+1, ... are distributed as N (µ1, σ

2
1).

3. PROBLEM DESCRIPTION

Our goal is to optimally aggregate individual sensor decisions
obtained via the log–likelihood ratio test in Eq. (1), to im-
prove the robustness of the accident detection process. Since
only a small number of downstream sensors (i.e., direction
opposite to the direction of a moving vehicle) within [0.1, 2]
miles from an accident location can provide useful informa-
tion about the accident [11,12], we restrict the problem of ag-
gregation to a set LN ⊂ L of N downstream sensors within
d miles from the location of each sensor si ∈ L.

We begin by discretizing the decision of each sensor si ∈
LN at time k by defining an indicator variable lik as:

lik =

{
1, if gik ≥ δ∗

0, otherwise
. (3)

We model the state Vk of freeway in the vicinity of sensors in
LN at time k as Vk = 0 (no accident), or Vk = 1 (accident),
with a priori probability P (Vk = 1) = p,∀k ∈ {1, 2, . . . },
where p denotes the probability of an accident. We also con-
sider the accuracy, hik, of each si at k. Intuitively,

P (lik = u|Vk = u) = hik, ∀k ∈ {1, 2, . . . }, (4)

where u ∈ {0, 1}. Note that P (lik = 1|Vk = 1) + P (lik =
0|Vk = 1) = 1 and P (lik = 1|Vk = 0)+P (lik = 0|Vk = 0) =
1. Further, we define misclassification cost Muw > 0, u, w ∈
{0, 1}, as the cost of detecting state Vk = w when the true
state is u, whereas we use variables ci,∀si ∈ LN , to denote
the total cost of decision lik, i.e., cost of computing ASF Zik,
and cost of performing the log–likelihood ratio test in Eq. (1).
Note that even if only a small subset of sensors in LN pass the
log–likelihood ratio test at any time k, they will all continue
generating lik values (i.e., consecutive ones can be generated)
at each subsequent time step until a final decision is made.

In order to detect Vk,∀k, we propose to sequentially ex-
amine individual sensor decisions in a decision center with
which sensors are connected [26]. At each step, the decision
center has to decide between continuing and stopping the ag-
gregation process based on the accumulated information thus
far and the cost of evaluating the remaining sensors’ deci-
sions. To this end, we introduce a pair of random variables
(R,DR), whereR denotes the sensor at which the framework
stops at, with the event {R = si} depending only on the indi-
vidual decisions of the sensor set {s1, s2, . . . , si}, that is the
information accumulated up till sensor si. DR denotes the
decision choice to select among the set {0, 1}, where the de-
cision {DR = 1} represents declaring an accident based on
the information accumulated up until sensor R.

Since we have already incorporated the average detec-
tion delay and false alarm rate in our initial formulation (see
Section 2), what remains is to improve the robustness of the
decision–making process by selecting R and DR at each time
k by optimizing the following cost function:

J(R,DR) = E

{
R∑

i=1

ci +

1∑
w=0

1∑
u=0

MuwP (DR = w, Vk = u)

}
.

(5)

The first term represents the cost of considering individual
sensor decisions, while the second term penalizes the mis-
classification cost. Thus, our optimization problem reduces
to finding a pair of random variables (R,DR) such that:

minimize
R,DR

J(R,DR). (6)
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4. ROBUST FREEWAY ACCIDENT DETECTION

In order to solve the optimization problem defined in Eq.
(6), we consider the a posteriori probability λi , P (Vk =
1|l1k, . . . , lik), a sufficient statistic of the accumulated infor-
mation that can be computed recursively as in Lemma 1.

Lemma 1. When sensor si generates decision lik, the a pos-
teriori probability λi can be computed as follows:

λi =
P (lik|Vk = 1)λi−1

P (lik|Vk = 1)λi−1 + P (lik|Vk = 0)(1− λi−1)
, (7)

Lemma 2. From the definition of λi and the fact that xR =∑N
i=1 xi1{R=i} for any sequence of random variables {xi},

where 1A is the indicator function for event A (i.e., 1A =
1 when A occurs, and 1A = 0 otherwise), the probability
P (DR = w, Vk = 1) can we written as follows:

P (DR = w, Vk = 1) = E
{
λR1{DR=w}

}
. (8)

The law of total probability enables us to write:

P (DR = w) =

1∑
u=0

P (DR = w, Vk = u). (9)

Using Lemma 2, Eq. (9) and the facts that P (DR = w, Vk =
0) = E

{
(1− λR)1{DR=w}

}
, and P (DR = w) =

E
{
1{DR=w}

}
enables us to rewrite the average cost in

Eq. (5) as follows:

J(R,DR) = E

{
R∑

i=1

ci +

1∑
w=0

(
M0w(1− λR) +M1wλR

)
× 1{DR=w}

}
. (10)

To solve the optimization problem in Eq. (6), we must
first obtain the optimal decision DR for any given stopping
time R. To this end, we first find a lower bound (independent
of DR) for the second term of the cost function in Eq. (10),
which is the part of the equation that depends on DR.

Theorem 3. For any decision rule DR given stopping time
R,
∑1
w=0 (M0w(1− λR) +M1wλR)1{DR=w} > g(λR),

where g(λR) , minw∈[0,1] [M0w(1− λR) +M1wλR]. The
optimal rule is defined as follows:

Doptimal
R = arg minw∈[0,1] [M0w(1− λR) +M1wλR] . (11)

From Theorem 3, we conclude that:

J(R,DR) > J(R,Doptimal
R ), where

J(R,Doptimal
R ) = min

DR

J(R,DR). (12)

Thus, we can reduce the cost function in Eq. (10) to one
which depends only on the stopping time R as follows:

J̃(R) = E

{
R∑
i=1

ci + g(λR)

}
. (13)

Fig. 1. Graphical representation of the proposed approach.

To optimize the cost function in Eq. (13) with respect to R,
we need to solve the following optimization problem:

min
R>0

J̃(R) = min
R>0

E

{
R∑
i=1

ci + g(λR)

}
, (14)

which constitutes a classical problem in optimal stopping the-
ory for Markov processes [25]. Since R ∈ {0, 1, . . . , N}, the
optimum strategy will consist of a maximum of N + 1 stages
and can be obtained via dynamic programming [27].

Theorem 4. For i = N − 1, . . . , 0, the function J̄i(λi) is
related to J̄i+1(λi+1) through the equation:

J̄i(λi) = min

[
g(λi), ci+1 +

∑
li+1
k

∈[0,1]

Ai+1(li+1
k )×

J̄i+1

(
P (li+1

k |Vk = 1)λi

Ai+1(li+1
k )

)]
, (15)

where Ai+1(li+1
k ) = P (li+1

k |Vk = 1)λi + P (li+1
k |Vk =

0)(1− λi) and J̄N (πN ) = g(λN ).

The optimal stopping strategy derived from Eq. (15) has a
very intuitive structure: it stops at the stage iwhere the cost of
stopping (the first expression) is no greater than the expected
cost of continuing given all information accumulated by stage
i (the second expression in the minimization).

Fig. 1 shows a graphical representation of the proposed
two–stage approach. For a set LN of N sensors located
within d miles, at time k = 1 of stage I, a sequence of
ASFs {Zi1}, si ∈ LN , are extracted from speed readings
{Y i1 }, si ∈ LN , and {gi1}, si ∈ LN , are computed us-
ing Eq. (2). Based on the outcome of the individual log–
likelihood ratio tests, a set {li1}, si ∈ LN , of decisions are
generated using Eq. (3). Next, at time k = 1 of stage II,
decisions {li1}, si ∈ LN , are evaluated sequentially using
Eq. (15) and once the decision to stop aggregating individ-
ual sensor decisions at sensor si = R1 is reached, the final
decision DR1

is generated using Eq. (11).
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The proposed two–stage approach operates in an contin-
uous loop, repeating the steps described above ∀k until an
accident is detected (i.e., DRk

= 1), at which point an alert
is raised, all variables are reset to their initial values, and the
process of evaluating ASFs resumes. From an implementa-
tion point of view, the accuracy hki for each sensor si, is up-
dated daily [26], whereas efficient computation of a (N+1)×
α matrix via Theorem 4 for different α values of λi ∈ [0, 1],
where each row corresponds to N + 1 values J̄i(λi), i =
0, 1, . . . , N , for set LN , is achieved by quantizing the interval
[0, 1]. Since this computation requires only a priori infor-
mation, it can be conducted offline, once daily. Hence, the
complexity of calculating J̄i(λi) is independent of time.

5. EXPERIMENTS

We evaluate our proposed two–stage approach on a real–
world dataset comprising 822, 049 speed readings and 1, 158
accident reports collected during the month of October 2013
for a 50 mile segment of the I405 freeway in the Los Angeles
County. Speed readings (measured in mph every 5 minutes
from 6am to 9pm everyday) are collected from 223 sen-
sors placed approximately 0.5 miles apart in both north and
south directions, and correspond to the average speed of all
lanes at a specific location. Accident reports (including time,
geographical location, type of accident, and direction) are
provided by the California Highway Patrol, LA Department
of Transportation, and Caltrans. We consider a single ASF,
the speed ratio, computed as Zik = (Y ik − Y ik )/Y ik , where Y ik
denotes the historical average speed at time k measured by
sensor si. We found the pre–accident mean and variance of
the Gaussian distribution to be−4.85×10−5 and 9.25×10−2,
respectively. The estimated parameter ρ of the zero modified
geometric distribution was 9.1×10−3 and π was set to 0.001.

Fig. 2 shows the average detection delay for varying prob-
ability of false alarm achieved by our proposed two–stage
approach. IIG with “Nearest Center” grouping heuristic [8]
(used to infer accident start time), methods in [24] (used for
change point detection in time–series data), and the best per-
forming schemes from our prior work, i.e., ATTAIN with
Weighted Distance (WD) [11] and ATTAIN–ML with Sensor
Accuracy (SA) [12] are also included for comparison. Intu-
itively, as the probability of false alarm increases, the average
detection delay decreases. Our two–stage approach outper-
forms all baselines with respect to average detection delay and
probability of false alarm. Specifically, it achieves 87.2% im-
provement in false alarm rate as compared to IIG (λ = 0.2),
which achieves the lowest average delay among all baselines,
and 65.2% improvement in average detection delay as com-
pared to EGADS–OM, that achieves the lowest probability of
false alarm among all baselines. Compared to our prior naive
aggregation schemes, our two–stage approach improves aver-
age detection delay by 32.1% and 15.4% respectively, for the
same lowest false alarm rate.
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Fig. 2. Average detection delay versus false alarm rate.
Lines refer to our two–stage approach, ATTAIN (WD) [11]
and ATTAIN–ML (SA) [12], crosses to IIG [8] with dif-
ferent thresholds, and rest to models in [24] (i.e., OM:
Olympic Model, AFM: Auto Forecast Model, ESM: Expo-
nential Smoothing Model, MAM: Moving Average Model,
and RM: Regression Model).

6. CONCLUSION

In this work, the problem of robust freeway accident detection
was addressed by proposing a two–stage approach that opti-
mally aggregates individual sensor decisions generated by a
Bayesian quickest change detection framework. Specifically,
an optimization problem was defined in terms of the cost of
the aggregation process and the Bayes risk associated with the
decision rule, and the optimal solution was derived. The pro-
posed two–stage approach achieves up to 65.2% and 87.2%
improvement in the average detection delay and probability
of false alarm respectively, compared to the state–of–the–art.
Future work will focus on generalizing the proposed frame-
work to jointly detect the accident time and location.
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