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ABSTRACT

Neuromorphic hardware platforms, such as Intel’s Loihi chip, sup-
port the implementation of Spiking Neural Networks (SNNs) as an
energy-efficient alternative to Artificial Neural Networks (ANNs).
SNNs are networks of neurons with internal analogue dynamics that
communicate by means of binary time series. In this work, a prob-
abilistic model is introduced for a generalized set-up in which the
synaptic time series can take values in an arbitrary alphabet and are
characterized by both causal and instantaneous statistical dependen-
cies. The model, which can be considered as an extension of expo-
nential family harmoniums to time series, is introduced by means of
a hybrid directed-undirected graphical representation. Furthermore,
distributed learning rules are derived for Maximum Likelihood and
Bayesian criteria under the assumption of fully observed time series
in the training set.

Index Terms— Spiking Neural Network (SNN), exponential
family model, Maximum Likelihood, Bayesian learning, neuromor-
phic computing

1. INTRODUCTION

The current dominant computing framework for supervised learning
applications is given by feed-forward multi-layer Artificial Neural
Networks (ANNs). These systems process real numbers through a
cascade of non-linearities applied successively over multiple layers.
It is well-understood that training and running ANNs for inference
generally require a significant amount of resources in terms of space
and time (see, e.g., [1]). Neuromorphic computing, currently backed
by recent major projects by IBM, Qualcomm, and Intel, offers a
fundamental paradigm shift that takes the trend towards distributed
computing initiated by ANNs to its natural extreme by borrowing in-
sights from computational neuroscience. A neuromorphic chip con-
sists of a network of spiking neurons with internal temporal analogue
dynamics and digital spike-based synaptic communications. Current
hardware implementations confirm drastic power reductions by or-
ders of magnitude with respect to ANNs [2, 3].

Models typically used to train Spiking Neural Networks (SNNs)
are deterministic, and learning rules borrow tools and ideas from the
design of ANNs. Examples include the standard leaky integrate-
and-fire model and its variants, with associated learning rules that
approximate backpropagation [4–6]. Probabilistic models for SNNs
are more conventionally adopted in computational neuroscience and
offer a variety of potential advantages, including flexibility and avail-
ability of principled learning criteria [7, 8]. Nevertheless, they pose
technical challenges in the design of training and inference algo-
rithms that have only partially been addressed [9–12].
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Fig. 1. Hybrid directed and undirected graphical representation of
a dynamic exponential family model: (a) causal graph GP repre-
senting directed causal relationships; (b) lateral graph GL encoding
instantaneous correlations; and (c) time-expanded graph assuming a
memory for the causal connections equal to τ = 1.

In this work, we study the problem of training a probabilistic
model for correlated time series. The framework generalizes proba-
bilistic models for SNNs [12,13] by allowing for arbitrary alphabets
– not restricted to binary – and by enabling individual time series
– or neuron signals – not only to affect each other causally over
time but also to have instantaneous correlations. It is noted that both
general discrete alphabets and lateral dependencies are in principle
implementable on existing digital neuromorphic chips [1]. We de-
rive distributed learning rules for Maximum Likelihood (ML) and
for Bayesian criteria based on synaptic sampling [14–18], and detail
the corresponding communication requirements. Applications of the
model to supervised learning via classification are also discussed.

The proposed model can be considered as an extension of expo-
nential family harmoniums [19] from vector-valued signals to time
series. We refer to the model as dynamic exponential family, which
is specified by a hybrid directed and undirected graphical represen-
tation (see Fig. 1). We specifically focus here on the case of fully ob-
served time series, which is of independent interest and also serves
as building block for the more complex set-up with latent variables,
to be considered in follow-up work.

The rest of this paper is organized as follows. In Sec. 2, we de-
scribe the dynamic exponential family model. Under this model, we
then derive distributed learning rules for ML and Bayesian criteria
in Sec. 3. Finally, Sec. 4 presents numerical results for a multi-task
supervised learning problem tackled via a two-layer SNN.

2. DYNAMIC EXPONENTIAL FAMILY MODEL

In this section, we describe the proposed probabilistic model as an
extension of exponential family harmoniums [19] to time series.
Hybrid directed-undirected representation. We consider a proba-
bilistic model for dependent time series that captures both causal and
lateral, or instantaneous, correlations. To describe both causal and
lateral dependencies, we introduce a directed graph GP = (V, EP)
and an undirected graph GL = (V, EL), respectively, where V =
{1, . . . , Nx} is the set of time sequences of interest. Having in mind
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the application to SNNs discussed above, we will also refer to the
vertices V as neurons or units. The edge set EP ⊆ V2 represents the
causal connection between time series and corresponding neurons,
and hence we refer to GP as the causal graph. Note that the presence
of self-loops, i.e., edges of the form (i, i) connecting a unit i to it-
self, or of more general loops involving multiple nodes, is allowed
in the causal graph, and it indicates a recurrent behavior for the time
series. In contrast, the edge set EL ⊆ V2 encodes instantaneous cor-
relations or lateral connections, and hence the graph GL is referred
to as the lateral graph. Examples are shown in Fig. 1(a) and Fig. 1(b)
for a system with Nx = 3 time series and thus Nx = 3 nodes.

In the causal graph GP , we denote by Pi := {j : (j, i) ∈ EP}
the subset of units that has a causal connection to unit i. Note that
the set Pi includes also unit i if there is a self-loop for unit i and
that a causal connection (j, i) ∈ EP from unit j to unit i does not
imply the inclusion of the edge (i, j) in EP in general. For the lateral
graph GL, we denote by Li := {j : (i, j) ∈ EL} the subset of units
that has a lateral connection with unit i. Edges (i, j) and (j, i) are
equivalent in graph EL. Moreover, we denote by Ci the subset of
units that are reachable from unit i in lateral graph GL in the sense
that there exists a path in GL between units i and any unit m ∈ Ci,
where a path is a sequence of edges in EL that share a vertex. We
generally have the inclusion Li ⊆ Ci. In example of Fig. 1(b), we
have the subsets C1 = ∅, C2 = {3}, and C3 = {2}.
Probabilistic model. Each unit i ∈ V is associated with a random
sequence xi,t for t = 1, 2, . . ., taking values in either a continuous
or discrete space Xi. Given causal and lateral connections defined
by graphs GP and GL, the joint distribution of the random process
xt = (x1,t, . . . , xNx,t) for t = 1, 2, . . . factorizes according to the
chain rule

pΘ(xT ) =

T∏
t=1

pΘ(xt|xt−1), (1)

where we denote as xt = (x1, . . . ,xt) the overall random process
from time 1 to t, and as Θ the set of model parameters. In (1), we
have implicitly conditioned on initial value x0, which is assumed
to be fixed. Furthermore, the conditional probability pΘ(xt|xt−1)
follows a distribution in the exponential family withNa-dimensional
sufficient statistics si(xi) := [si,1(xi), . . . , si,Na(xi)]

> for every
unit i and a quadratic energy function. In the practically relevant case
for neuromorphic computing where the alphabetsXi are discrete and
finite, i.e., Xi = {0, 1, . . . , C−1} for some integer C, the sufficient
statistics si are defined as the one-hot representation, i.e., si(xi) =
[1{xi=1}, . . . , 1{xi=C−1}]

>, where 1E is the indicator function for
the event E. Note that we have Na = C − 1. Furthermore, SNNs
are characterized by C = 2, i.e., by a binary alphabet, and we have
si(xi) = xi ∈ {0, 1}.

Writing si,t = si(xi,t) for simplicity of notation, we have

pΘ(xt|xt−1) ∝ exp

{∑
i∈V

(
θ>i si,t

+

τ∑
δ=1

∑
j∈Pi

s>j,t−δW
[δ]
j,isi,t +

∑
j∈Li

s>j,tUj,isi,t
)}

, (2)

for some memory parameter τ > 0. The model (2) captures causal
and lateral connections through the second and third terms of the
exponential function, respectively. The model is parameterized by
the set Θ = {θ, {W[δ]}δ∈{1,...,τ},U}, whose components are de-
scribed next.

First, the vector θi := [θi,1, . . . , θi,Na ]> contains unit-wise

natural parameter for unit i, which is collected as θ = {θi}i∈V .
Second, for every pair of units (j, i) ∈ EP , the Na × Na ma-
trix W

[δ]
j,i describes the causal influence of unit j to unit i after a

time lag of δ ∈ {1, . . . , τ} time instants. We use the notations
W[δ] = {W[δ]

j,i}(j,i)∈EP and W = {W[δ]}δ∈{1,...,τ}. The struc-

ture of the causal graph GP defines the position of zeros in W: W[δ]
j,i

is generally non-zero if (j, i) ∈ EP and is an all-zero matrix other-
wise. Third, for every pair of units (j, i) ∈ EL, the Na ×Na matrix
Uj,i describes the instantaneous dependence between units j and i.
The structure of the lateral graph GL defines the position of zeros in
U = {Uj,i}(j,i)∈EL : Uj,i is generally non-zero if (j, i) ∈ EL and
is an all-zero matrix otherwise. Note also that we have Uj,i = Ui,j

for (j, i) ∈ EL.
Following the common approach in computational neuroscience

[20], we adopt the parameterization of the causal parameters W as
the weighted sum of fixed basis functions with learnable weights. To
elaborate, for every (j, i) ∈ EP , we write

W
[δ]
j,i =

K∑
k=1

a
[δ]
k Vj,i,k, (3)

where we have defined K basis functions a[δ]
k , which vary over time

δ ∈ {1, . . . , τ} for k = 1, . . . ,K, and learnable weight matrices
Vj,i = [Vj,i,1, . . . ,Vj,i,K ] with Vj,i,k being a Na × Na matrix,
which are collected as V = {Vj,i}(j,i)∈EP . We note that a set of
basis functions, along with the weight matrices, describes the spatio-
temporal receptive field of the neurons [20]. Examples of basis func-
tions include raised cosines with different synaptic delays [20–22].
As a result, the model parameters are defined as Θ = {θ,V,U}.

Plugging (3) into (2), it is observed that the second term of the
exponential function can be expressed in terms of the k-th filtered
trace of unit j, which we define as the convolution

αj,k,t :=

τ−1∑
δ=0

a
[δ+1]
k sj,t−δ. (4)

This signal is obtained by filtering the signal sj,t through a filter with
impulse response equal to the basis function a[δ]

k . The set of filtered
traces αj,t−1 = [αj,1,t−1, . . . ,αj,K,t−1] from all units j in the set
Pi determines the generalized membrane potential of unit i at time
t

ri,t = θi +
∑
j∈Pi

K∑
k=1

V>j,i,kαj,k,t−1. (5)

With the help of this definition, we can rewrite the conditional joint
distribution in (2) as

pΘ(xt|xt−1) = pΘ(xt|rt) (6a)

∝ exp
{∑
i∈V

r>i,tsi,t +
∑

(j,i)∈EL

s>j,tUj,isi,t
}
. (6b)

In (6a), we have emphasized the dependence of xt on the history
xt−1 only through the membrane potentials rt = {ri,t}i∈V . We
refer to technical report [23] for further discussion.

3. LEARNING

In this section, we tackle the problem of learning the model pa-
rameter Θ for fixed basis functions under the assumption of fully
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(a) (b) (c) (d)

Fig. 2. Illustration of the information required to compute the gradi-
ents (7) for unit i: (a) directed graph GP ; (b) undirected graph GL;
(c) local and (d) non-local information necessary for learning.

observed time series. As we will see in Sec. 4, this set-up is, for
instance, relevant to the training of two-layer SNNs and generaliza-
tions thereof, in supervised learning problems.

3.1. Maximum Likelihood Learning via Gradient Descent

We first aim at deriving gradient-based rules for ML training. To this
end, we write the gradient of the likelihood function LxT (Θ) :=

ln pΘ(xT ) as∇ΘLxT (Θ) =
∑T
t=1∇Θ ln pΘ(xt|rt), where

∇θi ln pΘ(xt|rt) = si,t − Ext∼pΘ(xt|rt)

[
si,t|rt

]
, (7a)

∇Vj,i ln pΘ(xt|rt) = αj,t−1

(
si,t − Ext∼pΘ(xt|rt)

[
si,t|rt

])>
,

(7b)

∇Uj,i ln pΘ(xt|rt) = sj,ts
>
i,t − Ext∼pΘ(xt|rt)

[
sj,ts

>
i,t|rt

]
.

(7c)

The gradients (7) have the structure, typical for exponential family
models, that presents the difference between the empirical average
of the relevant sufficient statistics given the actual realization of the
time series xT and the corresponding ensemble average under the
model distribution (6) (see, e.g., [24]). A stochastic gradient-based
optimizer iteratively updates the parameter Θ based on the rule

Θ← Θ + η∇ΘLxT (Θ), (8)

by drawing an example xT from the training set, where the learning
rate η is assumed to be fixed here for simplicity of notation. With
this rule, each unit i ∈ V updates its own local parameters Θi =
{θi,Vi,Ui}, where we use the notations Vi = {Vj,i}j∈Pi and
Ui = {Uj,i}j∈Li .
Distributed computation of the gradients. We now discuss the
information required to compute the gradients (7) for each unit i
in order to enable a distributed implementation of the rule (8). We
define as local to neuron i all quantities that concern units that have
either a directed edge to neuron i in GP or an undirected edge with
it in GL. The first terms of all the gradients (7) require the local
statistics si,t = si(xi,t) and the local filtered traces αj,t−1 for all
parents j ∈ Pi. Furthermore, they also require the current local
sufficient statistics sj,t for all units j ∈ Li connected by lateral edge.
In contrast, the second terms entail the computation of the average
of the local sufficient statistics si,t and of the products sj,ts

>
i,t for

j ∈ Li over their marginal distributions, which is further discussed
next.

The marginal distribution of the local sufficient statistics si,t is
obtained from pΘ(xi,t|rt)

pΘ(xi,t|rt) =
∑
xCi,t

pΘi∪UCi
(xi,t,xCi,t|rCi∪{i},t), (9)

where we recall that Ci is the subset of units that are reachable from
unit i via lateral connections. As indicated by the notation in (9), the

joint distribution on the right-hand side can be obtained from (6b)
by including in the sums at the exponent only the terms that depend
on si,t and sCi,t. Calculation of (9) hence requires knowledge of
the membrane potentials from the units in Ci ∪ {i}, and it depends
on the local parameters Θi and lateral parameters UCi = {Uj}j∈Ci
of all units j in the set Ci. The marginal distribution of the products
sj,ts

>
i,t for (j, i) ∈ EL is similarly computed as

pΘ(xj,t, xi,t|rt) =
∑

xCi\{j},t

pΘi∪UCi
(xj,t, xi,t,xCi\{j},t|rCi∪{i},t).

(10)

In summary, as illustrated in Fig. 2, the computation of the gradi-
ents (7) for unit i requires knowledge of the local sufficient statistics
si,t and sj,t for all j ∈ Li, of the local filtered traces αi,t−1 and
αj,t−1 for all j ∈ Pi, as well as the local membrane potentials rj,t
and the current lateral parameters Uj for all j ∈ (Li ∪ Pi) ∩ Ci. It
also requires the acquisition of the membrane potentials rj,t and of
the current lateral parameters Uj for all units j in the set Ci. This
calls for non-local signaling if there are units in Ci that are not in the
sets Li or Pi.

The complexity of the computation of the second terms in (7)
depends exponentially on the size of the set Ci. In particular, if there
are no lateral connections, i.e., GL is an empty graph, the marginal-
izations (9)-(10) are not required since the set Ci of every unit i is
empty, and the second terms can be obtained in closed form. When
the sets Ci are too large to enable computation of the sums in (9)-
(10), Gibbs sampling, or approximations such as Contrastive Diver-
gence, can be used to enable the expectation [25].

3.2. Bayesian Learning

As a potentially more powerful alternative to ML learning, Bayesian
methods aim at computing the posterior distribution of the parame-
ter vector Θ under the assumption of a given prior p(Θ). Bayesian
learning can capture parameter uncertainty and is able to naturally
avoid overfitting. While exact Bayesian learning is prohibitively
complex, a gradient-based method has been recently proposed that
combines Robbins-Monro type stochastic approximation methods
[26] with Langevin dynamics [14]. The method, called the stochas-
tic gradient Langevin dynamics [15–18], updates the parameter as

Θ← Θ + η

(
∇Θ ln p(Θ) +N∇ΘLxT (Θ)

)
+
√

2ην, (11)

by drawing an example xT from the training set size of N , where
η is the learning rate and ν denotes i.i.d. Gaussian noise with zero
mean and variance 1. The update rule (11) has the property that the
distribution of the parameter vector Θ at equilibrium matches the
Bayesian posterior as η → 0.

4. RESULTS AND DISCUSSION

In this section, we consider an application of the methods developed
in this paper to a multi-task supervised learning problem based on a
two-layer SNN. The problem consists of the two tasks of classify-
ing a handwritten number and of detecting a possible rotation of the
image of the handwritten digit (see Fig. 3). As illustrated in Fig. 3,
the set of neurons V consists of two layers: the spike trains associ-
ated with the neurons in the first layer are determined by the input
image, while the spike trains corresponding to the second layer are
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Fig. 3. Hybrid directed and undirected graphical architecture of a
two-layer SNN used for supervised learning: each input neuron xi
corresponds to a pixel of the input image; each output neuron di en-
codes the digit index; and each output neuron oi encodes the orien-
tation index. The directed graph has causal connections from input
neurons to output neurons and self-loops at the output neurons; and
the undirected graph has lateral connections only between output
neurons in the same subset.

Fig. 4. ML learning: test accuracy for the two tasks of digit and ori-
entation classification versus the duration T of the time series when
K = 2.

determined by the correct labels for the indices of number and ori-
entation of the image. Specifically, we have one input neuron for
every pixel of the image, and the output layer contains two subsets
of neurons: one subset of neurons with one neuron for every possi-
ble digit index, and another subset with one neuron for each possible
orientation, i.e., vertical (unrotated) or rotated. The two-layer SNN
can be represented as a dynamic exponential family, in which there
are causal connections only from input neurons to output neurons,
with self-loops at the output neurons, as well as lateral connections
between output neurons in the same subset in order to capture the
correlations of the labels in the same task.

The training dataset is generated by selecting 500 images of each
digit “1” and “7” from the USPS handwritten digit dataset [27]. All
16× 16 images are included as they are, that is, unrotated, and they
are also included upon a rotation by a randomly selected degree. The
test set is similarly obtained by using 125 examples from the USPS
dataset. As a result, we have 256 input neurons, with one per pixel
of the input image. Each gray scale pixel is converted to an input
spike train by generating an i.i.d. Bernoulli vector of T samples
with spike probability proportional to the pixel intensity and limited
between 0 and 0.5. The digit labels {1, 7} are encoded by the first
subset of two output neurons, so that the desired output of the neuron
corresponding to the correct label index is one spike emission every
three non-spike samples, while the other neuron is silent. The same
is done for the orientation labels {v, r}, using the second subset of
two output neurons, where the label v indicates the original unrotated
image, and the label r indicates the rotated image. In order to test
the classification accuracy, we assume standard rate decoding, which
selects the output neuron, and hence the corresponding indices, with

(a) (b)

(c) (d)

Fig. 5. Bayesian learning with different priors: (a)-(b) with uniform
prior and (c)-(d) with bimodal prior; figures (a) and (c) show the log-
likelihood on the training and test sets as the function of the learning
epochs, where the shaded area indicates three standard deviations of
the mean based on 20 trials; and figures (b) and (d) plot the evolution
of 80 randomly selected causal parameters throughout the epochs
(left) and the histogram at the end of the learning epoch (right).

the largest number of output spikes. Finally, in order to investigate
the impact of lateral connections in our model, we also consider a
two-layer SNN in which lateral connections are not allowed.

First, we train both models with the ML learning rule (8) for
800 epochs with constant learning rate η = 0.05, based on 20 trials
with different random seeds. The model parameters are randomly
initialized with uniform distribution in range [−1, 1], while the lat-
eral parameters are randomly initialized in range [−2, 2]. We as-
sume theK raised cosine basis functions introduced in [9,20] in (3).
Fig. 4 demonstrates the classification accuracy in the test set versus
the length T of time series with K = 2. From the figure, the task
of classifying orientation is seen to be easier than digit identifica-
tion. Furthermore, we observe better accuracies in both tasks when
we train the model with lateral connections between output neurons.
This implies that the learning rule (8) can efficiently learn how to
make use of the instantaneous correlations among output neurons
participating in the same task.

We then consider the Bayesian learning rule (11), and study the
impact of the prior p(Θ) for the model parameters on overfitting. To
this end, we select 10 and 50 samples of each digit and orientation
class for training and testing, respectively. After training the model
for a number of epochs with constant learning rate η = 0.000625,
we evaluate the learned model by measuring the log-likelihood of
the desired output spikes for the correct label given the input images
in both training and test set. For the experiment in Fig. 5(a)-5(b), a
uniform prior over the causal parameters W is assumed; while we
choose a mixture of two Gaussians with means 0 and−1.0 and iden-
tical standard deviations 0.15 as a prior for the results in Fig. 5(c)-
5(d) (see [23] for details of the simulations). Fig. 5(a) shows that a
uniform prior can lead to overfitting, as also suggested by the larger
variance of the sampled weights plotted in Fig. 5(b). In contrast, a
bimodal prior yields good generalization performance due to its ca-
pacity to act as a regularizer by keeping a fraction of the weights
close to zero as seen in Fig. 5(d).
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