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ABSTRACT
Yule-Simon processes are preferential attachment processes
that can be represented as urn processes where balls are added
to a growing number of urns and where a new ball is placed
in an urn with probability that is proportional to the number
of balls in the urn. In this paper, we consider Yule-Simon
processes that interact with each other. We propose two models
of interaction, a deterministic and a probabilistic model. Based
on observed two processes, we want to determine if the two
processes interact and the direction of the interaction. In the
case of the probabilistic model, the objective is also to estimate
the strength of the interaction. We present detection/estimation
schemes for each model. We also provide simulation results
that demonstrate the performance of our schemes.

Index Terms— Yule-Simon distribution, interaction, de-
tection, estimation, Gibbs sampling

1. INTRODUCTION

Yule-Simon (YS) processes are preferential attachment pro-
cesses and they give rise to YS distributions, which are real-
izations of Zipf’s law [1]. YS distributions exhibit heavy tail
properties and they find a wide range of applications [2, 3]. YS
processes can be used in modeling the switching of regimes of
time series, where the probability of the time series to switch
a regime is proportional to the length of the regime. These
processes are often used to model phenomena with bursty dy-
namics, e.g., in communication systems [4], natural disasters
[5], and financial markets [6].

The YS distribution was discovered independently by Yule
in 1925 [7] and Simon in 1955 [8] to explain inequality of
outcomes in evolution and word frequency, respectively. The
basic idea is that selection creates a feedback loop which in-
creases the chances of future selection. This concept has gone
under several names such as preferential attachment [9], cumu-
lative advantage [10], and the Matthew effect [11], although
there are some technical differences in the latter case.

In this paper we are interested in detecting and estimating
interactions between YS processes. We observe two processes
and one of them may be affecting the other in an unknown
way. For example, if one of the processes undergoes a change
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of regime, this change may speed up a change of a regime
in the other process or vice versa. In our work, we model an
influencing process by having the influenced process change
its regime more likely than if the first process did not undergo
any changes.

We propose two interactive Yule-Simon models. By the
first model, Md, the influencing process affects the other
process in a deterministic manner. According to the second
modelMs, the influence takes place with a probability p. For
modelMd, we propose a Gibbs sampling-based scheme for
estimating the parameters of the processes and a method for
detecting the influence and its direction. For theMs model,
we propose a trace-based scheme to calculate the a posteriori
distribution of the unknown parameters of the model. We
demonstrate the performance of the schemes by simulations.

The main contributions of the paper are the proposed mod-
els for interactions between processes and the methods that
identify the influences and estimate the unknowns of the sys-
tem of two processes.

The paper is structured as follows. In Section 2 we birefly
introduce the Yule-Simon model. In Section 3 we introduce
theMd model and the scheme for detecting interactions. In
Section 4 we describe theMs model and explain the method
we propose for obtaining the a posteriori distribution of the
parameters of the model. In Section 5, we present the perfor-
mance of the two schemes from simulated data. With Section
6, we conclude the paper.

2. THE YULE-SIMON MODEL

The YS distribution can be formally expressed in terms of the
Beta function and parameter ρ as follows:

f(k; ρ) = ρB(ρ+ 1, k), k = 1, 2, 3, ..., (1)

where for large k, f(k; ρ) ∝ k−(ρ+1), thus suggesting that the
parameter ρ can be interpreted as the power-law exponent.

We now formulate a temporal stochastic process where the
time between events follows the YS distribution [12]. This
idea can be represented as a birth-reset process as shown in
Figure 1. The circles with numbers represent the duration that
the process has been in a given regime. The arrows pointing to
the right show the possibility of incrementing the duration of
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Fig. 1. Temporal representation of the Yule-Simon process.

the regime by one time step with a corresponding probability.
The arrows pointing to the left indicate possibility of starting
a new regime. As the duration of a regime increases, the
probability of starting a new regime decreases, or equivalently,
the probability of staying in the same regime increases. The
probability of a regime of length k can be written as the product

f(k; ρ) =
ρ

k + ρ

k−1∏
j=1

j

j + ρ
, (2)

which can be shown to be equivalent to (1).

3. A DETERMINISTIC MODEL OF INTERACTIONS

3.1. Problem Statement

Here we observe two YS processes that may interact with each
other. We denote them by A and B, and we assume that they
operate under one of the following models:

M0 : A does not influence B,
M1 : A influences B.

UnderM0, A and B evolve independently according to the
standard YS process described in Section 2. Under M1, if
a reset occurs in A, a reset simultaneously occurs in B. The
problem we address is to determine from the observed pro-
cesses which hypothesis is in effect. Next, we describe the
generative models of the processes.

3.2. Generative Models

Define the processesA andB until time instant t as binary time
series given by O1:t

A and O1:t
B . For each discrete time instant

1 ≤ τ ≤ t and process i ∈ {A,B}, we have Oτi ∈ {0, 1},
where Oτi = 1 indicates a change of regime, i.e., a reset in the
corresponding temporal YS process (Oτi = 0, otherwise).

UnderM0, the generative model of the observation at time
t can be formulated as follows:

M0:
OtA ∼ Ber

(
stA

stA + ρA

)
, (3)

OtB ∼ Ber
(

stB
stB + ρB

)
, (4)

where Ber(q) stands for a Bernoulli distribution with probabil-
ity q, and sti, i ∈ {A,B}, is a count used for determining the
probability for a regime change (as shown in Fig. 1). At time
t, this count is obtained by

sti = (st−1i + 1)1−O
t
i t = 1, 2 · · · . (5)

Under M1, the generative model of the observations at
time instant t is the same as that underM0, except that stA
and stB are modeled by

stA = (st−1A + 1)1−O
t
A , (6)

stB = (st−1B + 1)(1−O
t
A)(1−Ot

B). (7)

Thus, the process B will reset its count if process A or process
B encounter a regime change. It is important to note that
OtB = 1 if the process B selects a change of regime based on
its own probability for switching to a new regime.

3.3. Model Selection

Given sequences of observations from processes A and B, we
want to determine which of the two models is correct. We
assume that we do not know the parameters ρA and ρB .

We use a Gibbs sampling algorithm to estimate ρA and ρB ,
and it is presented in subsection 3.5. We then use the resulting
estimates to calculate the posterior probabilities of each model
hypothesis as follows:

p(Mi | O1:t
A , O1:t

B )

∝ p(O1:t
A , O1:t

B | Mi)p(Mi). (8)

Further we have,

p(O1:t
A , O1:t

B | M0) = p(O1:t
A | M0)p(O

1:t
B | M0), (9)

p(O1:t
A , O1:t

B | M1) = p(O1:t
B | O1:t

A ,M1)p(O
1:t
A | M1).

(10)

Model selection then proceeds by applying the MAP rule:

p(M0 | O1:t
A , O1:t

B )

p(M1 | O1:t
A , O1:t

B )
≷ 1, (11)

where for our experiments we use a non-informative prior (i.e.
p(M0) = p(M1) = 0.5). Since process A is not influenced
by processB in neitherM0 norM1, after combining (8)-(11),
the MAP decision (11) simplifies to

p(O1:t
B | O1:t

A ,M0)

p(O1:t
B | O1:t

A ,M1)
≷ 1. (12)

3.4. Model likelihood

For the hypothesis where process A influences process B, we
form the following 2×Mt matrix Kt

B at time t:

Kt
B =

[
k1B k2B . . . kMt

B

I1B I2B . . . IMt

B

]
, (13)
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Fig. 2. The likelihoods ofM0 andM1 for various values of ρB , k1, and k2.

where kiB , (1 ≤ i ≤ Mt) is the length of the ith regime for
process B, the indicator function IiB = 1 denotes a regime
change due to process A, and Mt is the number of regimes by
time t.

While the probability for an arbitrary regime indexed by i
when IiB = 0 can be obtained simply by the YS distribution
(1), the probability for regime j given that IiB = 1 can, by
some calculation, be formulated as a Beta function as

p(k; ρ, I = 1) = ρB(ρ, k) , f ′(k; ρ). (14)

With (1) and (14), the likelihood can be written as

p(O1:t
B | O1:t

A ,Mi) = p(Kt
B | Mi)

=

K∏
i=1

[f(kiB ; ρB)]
(1−IiB)[f ′(kiB ; ρB)]

IiB , (15)

where for modelM0, IiB = 0 for all 1 ≤ i ≤Mt.
To gain further insight about the behavior of the likelihoods

ofM0 andM1, we plot them for various parameters. They
are shown in Fig. 2, where the processes A and B have both
started new regimes at the beginning of the period. We consider
various cases where the process A starts a new regime after k1
time slots. The symbol k2 represents the number of time slots
when the process B starts a new regime. In plot (a), we show
the normalized likelihoods ofM0 andM1 with fixed k1 and
three different values of ρB . In plot (b), we display the same
likelihoods for a fixed ρB and three different values of k1.

3.5. Model selection framework with Gibbs sampling

For estimation of ρA and ρB , we use the Gibbs sampling frame-
work outlined in [13] and adapt it to the interactive case. The
Gibbs sampling process for estimating ρB can be summarized
as follows:

• For i = 1, . . . , k,

– if IiB = 0, sample ti | ρB , ki ∼ Beta(ρB + 1, ki),

– if IiB = 1, sample ti | ρB , ki ∼ Beta(ρB , ki);

• Compute wi = log ti, for i = 1, . . . ,K;

• Sample ρ | w,k ∼ Gamma(a+ n, b+
∑n
i=1 wi).

where w and k denote the sets of all wi and ki, respectively.
We use Beta(u, v) to denote a Beta distribution with shape
parameters u and v, and Gamma(k, θ), a Gamma distribution
with shape parameter k and scale parameter θ.

4. A STOCHASTIC MODEL OF INTERACTIONS

Here we introduce a model that allows for a varying strength
of influence between processes. According to this model,
when an influencing process switches a regime, there is a
probability π that the influenced process will reset its counter
in the following time instant. We denote this model byMs.

4.1. Scheme for estimation

In modelMs, in addition to the parameters ρA and ρB , we
have to estimate the probability of influence π. When the
influencing process switches its regime, we need to estimate if
the influenced process has reset its counter or not. Consider
that in the observations there are a total of n time slots when
the influencing process has switched its regime. Then there
exist 2n possible traces of the influenced process resetting its
counter. We denote these traces by Qi, where 1 ≤ i ≤ 2n.

We carry out Gibbs sampling for each given trace and
obtain the estimated values of ρB . For convenience in nota-
tion, we denote the estimated value of ρB for trace i as ρB,i.
Further, as a prior distribution for π, we assume a Beta distri-
bution given by Beta(α0, β0). The posterior distribution of π
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Fig. 3. Simulation results for theMd model. The color blue
refers to the case when processes A and B affect each other,
the green when the process A affects B but B does not affect
A, and red when A and B are independent. Plot (a) shows
the model selection results when A influences B, and plot (b)
when B influences A.

is also a Beta distribution given by pi(π) = Beta(αi, βi). The
parameters αi and βi can be obtained as follows:

αi = α0 +mi, (16)
βi = β0 + n−mi, (17)

where mi is the number of resets in trace Qi. For each trace
Qi, we also calculate the likelihoodwi. Given the observations
OA and OB , and the trace Qi, we formulate the matrix K of
the influenced process and use (15) for the likelihood of the
considered trace.

With this information, we construct a posteriori distribu-
tion for ρB and π. The a posteriori probability distribution of
ρB is

p(ρB) =

2n∑
i=1

wiδ(ρ− ρBi
), (18)

where δ(·) is the Dirac delta function located at ρBi , and the a
posteriori probability distribution of π is given by

p(π) =

2n∑
i=1

wiBeta(αi, βi). (19)

5. SIMULATION RESULTS

We conducted experiments to test the proposed methods for
inference of theMd andMs models. In Figure 3, we show the
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Fig. 4. The simulation results for the Ms model. Plot (a)
shows the a posteriori distribution for ρ, and plot (b) shows the
a posteriori distribution for p. The abscissa shows the value of
the variables and the ordinate shows the frequency.

Monte Carlo results forMd. We considered three scenarios
of influence between A and B. In the first scenario A and
B influenced each other mutually; in the second scenario A
affects B but B does not affect A; in the third scenario A
and B are independent. For each scenario, we conducted
model selection experiments 100 times. The lengths of the
time series were 2000 time slots. We ran the Gibbs sampling
method with 1000 iterations. The results are shown in Fig.
3. We can see from them that the model selection produces
accurate results. With these simulations, we also showed that
our model estimation scheme can correctly choose the model
when there is a mutual interaction between the processes.

In Fig. 4, we implement the proposed scheme for theMs

model, and show Monte Carlo results for the a posteriori dis-
tributions of ρB and π. The true value of ρB was 0.75 and the
true value of π was 0.5. We can see that the distributions cen-
ter around the true values of π, but the center of the resulting
distribution of ρB is somewhat biased and larger than the true
value. The length of the time series was 100 samples, and the
number of Gibbs sampling iterations was equal to 400.

6. CONCLUSION

In this paper we propose a deterministic and stochastic inter-
active Yule-Simon models that describe the nature of their
interactions. For the deterministic model, we propose a Gibbs
sampling-based scheme for estimating the unknown parame-
ters of the Yule-Simon processes and a method for selecting the
model that describes the interaction between the processes. For
the stochastic model, we propose a trace-based Monte Carlo
method to obtain the a posteriori probability distribution of the
estimated parameters. Simulation results that demonstrate the
performance of the proposed methods are also provided.
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