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ABSTRACT
In this paper, we consider the estimation of hyperparameters
for regularization terms commonly used for obtaining struc-
tured sparse parameters in signal estimation problems, such
as signal denoising. By considering the convex regulariza-
tion terms as negative log-densities, we propose approximate
maximum likelihood estimation for estimating parameters for
continuous log-supermodular distributions, which is a key
property that many sparse priors have. We then show how
“perturb-and-MAP” ideas based on the Gumbel distribution
and efficient discretization can be used to approximate the
log-partition function for these models, which is a crucial step
for approximate maximum likelihood estimation. We illus-
trate our estimation procedure on a set of experiments with
flow-based priors and signal denoising.

Index Terms— hyperparameter learning, maximum like-
lihood, sparsity-inducing norms

1. INTRODUCTION

Structured sparsity has emerged a versatile tool to go beyond
plain parsimonious models. Indeed, taking into account the
potential structure between the signal coefficients to be set
to zero, both interpretability and predictive performance can
be improved. Structured sparse priors can be handled in the
various frameworks that have emerged for sparse methods,
within convex optimization [1, 2] or non-convex optimiza-
tion [3, 4, 5].

While encoding structure has several benefits, it comes
with the extra task of specifying a certain number of hyper-
parameters, for example, for tree-structured sparsity, the
weights to be given to each depth of the tree. The goal of
this paper is to propose data-driven estimation procedures
for all of these hyper-parameters for a class of priors based
on submodular functions. These include tree-structured pri-
ors or group-based priors and are commonly used in signal
estimation problems [6, 7].

In this paper, we make the following contributions:

– We propose in Section 2 approximate maximum likelihood
estimation for estimating parameters in continuous log-
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supermodular distributions, whose negative log-densities
are commonly used as structured sparse priors in signal
processing applications.

– We show in Section 3 how “perturb-and-MAP” ideas based
on the Gumbel distribution and efficient discretization can
be used to approximate the log-partition function for these
models, which is the key step for approximate maximum
likelihood estimation. Here, the fact that submodular func-
tions can be efficiently minimized is crucial.

– We illustrate our estimation procedure in Section 4 on a set
of experiments with flow-based priors and signal denoising.

2. LOG-SUPERMODULAR DISTRIBUTIONS

As a probabilistic model, we are going to work with the family
of log-supermodular distributions [8]. These distributions are a
special case of a Gibbs distribution over some variable x ∈ X,
which could at this point be discrete or continuously valued:

dp(x) =
e−f(x)

Z(f)
dµ(x),

where dµ(x) is a base measure, and f(x) is a potential func-
tion and the normalizer Z(f) =

∫
X
e−f(x)dµ(x). It is worth

noting that the partition function Z(f) is intractable in the gen-
eral case, continuous or discrete, and its handling constitutes
the core computational difficulty of probabilistic inference [9].
If the potential function f(x) is submodular (see definition
in the next section), then the distribution above is called log-
supermodular (because −f is supermodular).

We use these models as they cover a broad family of distri-
butions and allow us to perform an efficient gradient descent
optimization of the likelihood objective due to submodularity
(see below).

2.1. Supermodular and Submodular Functions

Submodular functions can be defined on sets X which are prod-
ucts of intervals. These functions have the particular property
to have polynomial-time minimization algorithms [10]. In this
paper, we consider the special cases X = Rn and X = {0, 1}n,
which will lead respectively to continuous and discrete sub-
modular functions.

Discrete functions. A function f : {0, 1}n → R can be
uniquely identified to a set-function defined over subsets of
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{1, . . . , n}, by defining F (A) = f(1A) where 1A ∈ {0, 1}n
is the indicator vector of the set A. It is then said submod-
ular if it satisfies the following diminishing return property
∀A,B ⊆ {1, . . . , n} such that A ⊆ B and for all i, then
F (A∪ i)−F (A) ≥ F (B ∪ i)−F (B). Classical submodular
functions include network flows, graph cuts, as well as con-
cave functions of the cardinality and appear in many areas of
signal processing and machine learning [11, 12]. In particu-
lar, non-decreasing submodular functions are commonly used
to penalize the support of signal in compressed sensing [13].
Classical examples include group-based priors (counting the
number of active groups) or tree-based priors (cardinality of
the smallest rooted tree containing a given set), which are
commonly used in signal processing [3].

Continuous functions. In the continuous setting, a twice
differentiable function f : Rn → R is submodular if for
all x ∈ Rn, the cross second-order derivatives are non-
positive, that is, for all i 6= j, then ∂2f

∂xi∂xj
(x) 6 0. For

non-differentiable functions, see more details in [14]. Im-
portant examples include the Lovász extensions of discrete
submodular functions defined on {0, 1}n [12, 11]. These ex-
tended functions are typically used for regularization as fol-
lows: when a vector w whose support A = {i, wi 6= 0}
should have a small value F (A) where F is the corresponding
set-function, then the penalty f(|w|), where f is the Lovász
extension, and the absolute values are taken component-wise,
is a natural convex relaxation [12, 13]. Classical examples are
f(|w|) =

∑
A∈A dA maxa∈A |wa|, where A is a set of sub-

sets of {1, . . . , n} [15], see more details in Section 4.2. Other
non-convex but tighter relaxations are of the form f(|w|p)
where the power is taken component-wise [16].

2.2. Discrete Log-supermodular Distributions

An important example of a submodular minimization problem
is a graphcut problem, which is very applicable in a variety of
fields. For example it is popular to incorporate graphcut func-
tions as potential functions in Markov random fields (MRFs)
and perform an image segmentation as a side effect [17, 18]).
Other examples can be mutual entropy, certain functions of
eigenvalues of submatrices and many others [11]. Seeing them
as log-densities thus leads to a probabilistic treatment (see,
e.g., [8]), which similar to what we try to achieve in this paper
for continuous distributions.

2.3. Continuous Log-supermodular Distributions

Several examples have been considered in other settings and
then called “multivariate-totally positive of order 2”, and in-
clude the multivariate logistic, Gamma distributions, as well as
characteristic roots of random Wishart matrices [19]. We pro-
pose to extend their use in signal processing, in order to learn
parameters of the associated negative log-densities (which are
submodular functions), in structured sparsity problems.

2.4. Log-partition Function for Bayesian Learning

Let us consider the following standard denoising problem, with
x = Dα+ ε, where ε is a Gaussian noise∼ N(0, σ2I). Given
the noisy signal x ∈ Rn and a dictionary D ∈ Rn×k, we try
to recover the initial representation α ∈ Rk. The decoding
problem often has the following form:

min
α

1

2
‖x−Dα‖2 + Λ(α),

where Λ(α) serves as a regularizer. This formulation can
be considered from three points of view: 1) as penalized
least squares regression without any probabilistic meaning,
as 2) maximum a posteriori (MAP) or 3) minimum-mean-
square-error (MMSE) estimation within some probabilistic
model [20]. The probabilistic interpretation allows to learn
parameters of Λ(α), which we aim to do here. The joint prob-
ability has the form: P (x, α) = P (α)P (x|α) = P (α)P (ε =

x − Dα), where P (α) = exp(−Λ(α))
Z is a log-supermodular

prior on α. Thus, we would like to parameterize and learn
the prior P (α) from the training dataset before performing the
denoising on the test dataset.

In a sparse set-up we would like to encourage the argument
α to contain plenty of zero elements and thus we can use the
usual `1-formulation [21]:

min
α

1

2
‖x−Dα‖2 + Λ(α),

s.t. Λ(α) = f(|α|),
where |α| is meant component-wise. Here f(|α|) is encoding
the structured sparsity, see an example in the Section 4.2.
In this paper, for simplicity, we consider only orthonormal
dictionaries.

Maximum likelihood for parameter learning. The main
goal here is to consider Λ(α) as a negative log-density with
the functional parameter f(·) and to find its optimal data-
dependent parameters by maximum likelihood. To do so,
we need to solve an optimization problem that involves the
log-partition function in the way described below. We use
the notation, for a submodular function f defined on Rk+,
logZ(f) = A(f) = log

∫
Rk+

exp(−f(α))dα. Note that, by a
simple change of variable, we have:

log

∫
Rk

exp(−f(|α|))dα = k log 2+log

∫
Rk+

exp(−f(α))dα.

We thus have − logP (α) = f(α) +A(f) + k log 2.
In order to learn the distribution of α we need to perform

maximum likelihood for the densities defined above. To per-
form this we need to approximate the log-partition function A,
which is always convex, but usually hard to compute. Two
questions arise: (1) approximation of A(f), and (2) param-
eterization of f in a suitable form so that our optimization
problems are easily solved.
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3. PERTURB-AND-MAP

To perform an effective parameter learning, we would like to
approximate the log-partition function A(f) by making use of
the “perturb-and-MAP” approach [22]. One necessary point is
to have an access to an efficient MAP-oracle, e.g., a graphcut
solver for our particular example of flow-based priors (see
Section 4.2).

Our algorithm is based on an approximation result
from [22], which states that for any real-valued function
g defined on a discrete set T =

∏n
i=1 Ti, then

log
∑
t∈T

eg(t) 6 Eh1,...,hn∼Gumbel

[
max
t∈T

(
g(t)+

n∑
i=1

hi(ti)
)]
,

where Gumbel denotes the Gumbel distribution1 and with a
collection {hi(ti)}i=1,...,n

ti∈Ti of independent Gumbel samples.
This allows to define an upper-bound on the log-partition func-
tion, which is based on perturbing g and performing maximiza-
tion; it is thus efficient only for functions g for which adding a
separable terms leads to efficient optimization. This is exactly
the case for negatives of submodular functions.

Via the proposed approximation we achieve a direct way of
parameter learning in the discrete case. We can approximate
the expectation over Gumbels using Monte-Carlo ideas by
replacing the expectation by sampling. An efficient number
of Gumbel samples depends on application, however in our
experiments, M = 100 seems to be enough for most of the
setups. Following, [23], in practice, when embedding the
approximation result above in an optimization problem (for
maximum likelihood) we can use stochastic gradient descent
as a subroutine [23], rather than using a fixed set of Gumbel
samples.

3.1. Extension to Continuous Case

To work with continuous data, we need to perform a discretiza-
tion of the partition function to cast its calculation as a discrete
optimization problem.

Approximation of A(f) = log
∫
Rk+

exp(−f(α))dα. In

order to approximate A(f), we are going to discretize each
αi into r values 0 = u0 < u1 < · · · < ur−1, and consider
the measure on R+ define as the weighted sum of Diracs∑r−1
j=0 πjδ(β = uj). A simple example (based on the trape-

zoidal rule) for the weights (πj) is π0 = u1−u0

2 , πr−1 =
ur−1−ur−2

2 , with the rest as πj =
uj+1−uj−1

2 . We then dis-
cretize the integral in the following way

Â(f) = log
∑

z∈{0,...,r−1}k

( k∏
i=1

πzi
)

exp(−f(uzi , . . . , uzk)).

1The Gumbel distribution on the real line has the cumulative distribution
function F (z) = exp(− exp(−(z + c))), where c is the Euler constant.

This is done by considering kr Gumbel variables hi,j , i ∈
{1, . . . , k} and j ∈ {0, . . . , r − 1}, and the perturb-and-MAP
approximation

ÂG(f) = Eh
(

max
z

{
− f(·) +

k∑
i=1

hi,zi +

k∑
i=1

log πzi

})
.

The separable term hi,zi + log πzi does not change the nature
of the problem and the function remains submodular (but now
defined on a finite number of values).

3.2. Decoding with MMSE

In this section we discuss several ways of performing infer-
ence. Decoding with MAP is straightforward, as we can get
the approximation with a discrete solver or an exact solution
via divide-and-conquer algorithms [24], if the objective is con-
vex. Instead of using MAP decoder we can use MMSE, which
is known to be the Bayesian optimal classifier for the `2-loss
function (see, e.g., [20]). However, it is a challenge to calcu-
late, and as one of our contributions in this work we propose a
way of its approximation via perturb-and-MAP ideas. Indeed,
we have the estimator

ψMMSE(x) = E(α|x)

P (α|x) =
P (x, α)∑
α P (x, α)

=
exp(−s(α, x))

Z(s)
,

where s(α, x) = 1
2σ2 ||x−Dα||2+Λ(α) = 1

2σ2 ||DTx−α||2+
Λ(α) for an orthonormal dictionary D. Then, the optimal
estimator can be computed as:

ψMMSE(x) = E(α|x) ≈

1

M

M∑
m=1

arg min
αm

{
s(αm)−

∑
k

hk(αkm)

}
,

as the expectation of the sufficient statistics is known to be a
gradient of the log-partition function [25]. Thus, we can get
an approximate solution via approximate mean marginals and
discretization.

4. EXPERIMENTS

In the experiment section we illustrate the proposed parame-
ter learning technique and compare the performance of two
decoding approaches.

4.1. Synthetic Data. Experiments on decoding

We consider a one dimensional distribution P (α) = exp−|α|

Z .
Closed-form solution for MMSE in discrete setup can then be
calculated exactly for this one dimensional setup. We present
denoising results for 10,000 randomly sampled data points in
Table 1. We can clearly see that MMSE outperforms MAP in
this synthetic setup, in a set-up where the Gumbel approxima-
tion of the log-partition function is exact.
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Approach `2 loss value
continuous MAP solution 0.693

MAP-oracle 0.744
MMSE exact 0.626

MMSE approx [M = 100] 0.632
MMSE approx [M = 1000] 0.628

Table 1: Denoising results. Synthetic data.

4.2. Flow-based priors

We now show examples where our maximization problems
can be cast a a max-flow / min-cut. Following Sections 6.3
and 6.4 of [12], we consider prior Λ(α) as functions f of the
form

f(α) =
∑
A∈A

dA max
a∈A
|αa|,

where dA are parameters that we are interested of. In order to
minimize the function f(uz1 , . . . , uzk) +

∑k
i=1 vi,zi , which

is required in Section 3.1, following [26], we can create a
weighted directed graph where the (st)-minimum cut gives
the optimal solution, thus making the optimization efficient.

4.3. Real Data. Experiments on the parameter learning
and decoding.

We work with patches 8× 8 of the ’boat’ image. Half of them
are considered as a train dataset to learn hyperparameteters
of our priors, and another half as a test dataset. The original
image is 512 × 512. After Gaussian noise was added to the
test dataset, we try to denoise it with the proposed decoding
techniques. We compare two ways of denoising: 1) model the
prior directly for the pixels values and 2) model the prior for
some wavelet coefficients.

We work under the following assumption P (α) = e−f(α)

Z(f) ,

where f(α) =
∑
A∈A dA maxa∈A |αa|, where A is a set of

predefined groups of variables and α could be either the pixels
values, either the wavelet coefficients. These groups could
be based on the image grid or on the wavelet tree structure.
Moreover, D is a orthogonal wavelet transform (we use Haar
wavelets).

Before we report results in Tables 2 and 3, we first com-
ment on the discretization grid which influences a lot the per-
formance. We use a uniform grid with a step ∆ (either 1 or
10). The quality and the running time consumption of the
discrete MAP and MMSE depends on the discretization grid
and on ∆ correspondingly. For a fair comparison we spend the
same amount of time for both: MAP and ∆ = 1 consume ap-
proximately the same amount of time as MMSE and ∆ = 10.
For MMSE we use M = 100 Gumbel perturbations. The
method “c. MAP” refers to the exact MAP solution achieved
through direct continuous optimization via divide-and-conquer
algorithm [24]. In Tables 2 and 3 we compute signal-to-noise

ratios (SNR), where SNR = 20 log10
||x||2
||x̂−x||2 and x is a test

image and x̂ its prediction. We accompany the results with
their standard deviation, across 10 different noise samples.

First set of experiments. We compare several models:
“baseline”, “unary” and “grid” models. “baseline” is a model
with no learning and we set parameters dA equal to zeros,
“unary” corresponds to groups of size one (independent but not
identically distributed variables), and “grid” corresponds to
groups of size one and two in a grid manner.

method baseline unary grid
c. MAP 22.33± 0.02 22.32± 0.02 26.16± 0.02

MAP∆10 21.95± 0.01 21.95± 0.01 25.36± 0.02
MAP∆1 22.32± 0.02 22.31± 0.02 26.16± 0.02
MMSE 22.31± 0.02 22.30± 0.01 25.99± 0.01

neg. lhood 356.4 355.7 253.5

Table 2: Primal approach. Signal-to-noise ratio values.

Second set of experiments. The model “tree” corre-
sponds to groups of size one and two that represent the wavelet
quad-tree dependencies of two-dimensional Haar wavelets.

method baseline unary grid
c. MAP 22.33± 0.02 24.96± 0.01 24.66± 0.01

MAP∆10 21.98± 0.01 24.63± 0.08 24.44± 0.05
MAP∆1 22.33± 0.02 25.02± 0.03 24.72± 0.03
MMSE 22.29± 0.03 25.17± 0.02 25.15± 0.02

neg. lhood 480 185.5 183.0

Table 3: Wavelets approach. Signal-to-noise ratio values.

Summary: From Tables 2 and 3, we can see that we are
able to learn the structure. In the primal approach (directly on
pixels), the Markov random field (“grid”) performs best, while
for the wavelet approach, unary potentials already work best
(with little gains in likelihood and denoising performance for
the “tree” approach). Note that MMSE sometimes outperform
MAP, however it depends on the discretization grid.

5. CONCLUSION

We proposed a new parameter learning approach in the non-
trivial structured and continuous setup. We demonstrated its
performance for a denoising problem. We also propose a
way to perform approximate MMSE estimation which is the
optimal decoder for `2-loss evaluation. There is still some
space for further investigation: non-uniform discretization
grids, `p-looking norms such as done by [27], where more
heavy-tailed priors were considered.
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