
PREDICTION OF MULTI-TARGET DYNAMICS USING DISCRETE DESCRIPTORS: AN
INTERACTIVE APPROACH

Mohamad Baydoun, Damian Campo, Divya Kanapram, Lucio Marcenaro, Carlo S. Regazzoni

DITEN, University of Genoa, Italy.

ABSTRACT

We propose a probabilistic method to track and interpret the inter-
actions of moving objects. The proposed method is based on the
analysis of location data from different moving objects that mod-
ify their dynamics according to rules of interactions, namely attrac-
tive and repulsive forces governing objects’ motions in a scene. Our
method uses a Bayesian structure to identify key elements of the in-
terplay rules and facilitates the prediction of objects’ dynamics as
an interacting system. Such a prediction facilitates the detection of
abnormalities by identifying unseen interaction effects in the scene.

Index Terms— Abnormality detection, interacting models, tra-
jectory analysis, Kalman filter, Particle filter.

1. INTRODUCTION

Modeling and understanding trajectories are important tasks for in-
telligent transportation [1, 2], surveillance [3, 4, 5] and autonomous
systems [6, 7, 8]. Moving objects can be modeled as a series of
interactions with their surroundings such that their dynamics are a
result of forces (external effects) that act on them over time [9]. The
first attempt to understand human trajectories based on force field
models explains the motion of individuals in simulations as an ef-
fect produced by surrounding structures and other pedestrians [10].
Other works apply such concepts in real scenarios [11, 12] and gen-
eralize the formulation to other kinds of applications, such as people
re-identification [13], group detection [14] and other objects differ-
ent from pedestrians [9].

Forces that act over objects can be attractive or repulsive. Goals,
i.e., destination points, can be represented by attractive forces and
obstacles, i.e., structures or other entities, as repulsive forces [13,
15]. Accordingly, a trajectory can be explained by the combina-
tion of different forces that operate on the moving object. By iden-
tifying and modeling attractive/repulsive forces produced by con-
stituent parts of the environment, we can build complex models that
explain the interplay between objects and their surroundings. We
aim to model such interactions in a probabilistic manner through
a Dynamic Bayesian Network (DBN) structure. DBNs have been
used for representing temporal relationships of systems that evolve
through time. It is the case of predictive models based on objects’
locations and their time derivatives [16, 17, 18, 19] or detection of
abnormalities [20, 21, 22]. Our method is based on a DBN approach
that facilitates the characterization of objects’ dynamics and their
inter-dependencies. In turn, our approach enables the detection of
abnormalities concerning previous observations. Anomalies are in-
terpreted as new force fields that interact with moving objects. In
this work, interactions are simulated as a set of rules based on force
fields; observed data facilitates to explain those interactions as prob-
abilistic inferences caused by the activation of switching variables

in a DBN. In order to build such DBN, we first create a vocabu-
lary of spatial zones in a scene where constant velocity patterns are
valid based on multiple observed objects. To this end, we employ
a baseline Kalman Filter (KF) that generates familiar objects’ dis-
placements based on their position in the environment.

Then, we use transitions between the zones to track newly ob-
served objects by employing a set of KFs, which model the behaviors
of continuous variables. Moreover KFs are coupled with a particle
filter (PF) method which describes the evolution of discrete variables
under an assumption of interaction. Finally, we employ probabilis-
tic abnormality indicators to detect unseen behaviors in the dynamic
interplay between objects.

This paper is motivated by previous works on encoding static
force field information based on moving data [23] and inference of
states/superstates abnormalities in trajectory data [24]. Nonetheless,
this paper differs from previous works since i) It presents a novel
way for modeling conditional dependencies between couples of ob-
served objects. ii) It employs a coupled DBN structure that connects
information of moving interacting objects. iii) Inferences from the
proposed coupled DBN are used to detect abnormalities of each ob-
ject depending on the state of their surroundings. Simulated data is
employed for validating the DBN performance at the coding force
field interacting rules into probabilistic models.

The rest of the paper is divided as follows: Section 2 presents the
proposed method for modeling interactions between moving objects.
Section 3 shows the obtained results in simulated data. Section 4
concludes the article and proposes some future works.

2. PROPOSED METHOD

Let Zk
1 and Zk

2 be the observed positions of two entities, namely
object 1 and object 2. Both entities are assumed to interact with each
other at a given time instant k. Let us consider a KF which uses zero
order motion dynamical equation:

X̃k+1 = AX̃k + wk, (1)

where X̃k represents the object’s state composed of its generalized
coordinate positions and their respective velocities in a time instant
k, such that X̃k = [x ẋ]ᵀ. x ∈ Rd and ẋ ∈ Rd. d represents
the number of coordinates of the environment. A = [A1 A2] is a
dynamic model matrix: A1 = [Id 0d,d]ᵀ and A2 = 02d,d. In rep-
resents a square identity matrix of size n and 0l,m is a l × m null
matrix. wk represents the prediction noise which is here assumed
to be zero-mean Gaussian for all variables in Xk with a covariance
matrix Q, such that wk ∼ N (0, Q). As can be seen from the equa-
tion (1), the proposed model suggests that moving objects will rest
in a quasi-static location and only random noise perturbations, mod-
eled by wk will affect their states. The linear relationship between
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measurements and the state of individuals is defined as:

Zk = HX̃k + vk, (2)

where H = [Id 0d,d] is an observation matrix that maps states onto
observations and vk represents the measurement noise produced by
the sensor device which is here assumed to be zero-mean Gaussian
with a covariance matrix R, such that, vk ∼ N (0, R). By consider-
ing the dynamical filter in equation (1), it is possible to estimate the
velocity by using KFs’ innovations, such that:

vk =
Zk −HX̂k+1|k

∆k
(3)

where X̂k+1|k is the state space estimation of the time instant k + 1
given observations until time k. ∆k is the sampling time.

In this paper, two independent unmotivated KFs are applied syn-
chronously to position data of object 1 and object 2. A joint state
space vector (System generalized states) is defined as X̃k and con-
sists of both state object’s state at each time instant k, such that:

X̃k =

[
X̃1

k

X̃2
k

]
, (4)

where X̃1
k and X̃2

k represent the generalized states of object 1
and object 2 respectively.

2.1. Training phase (learning a DBN)

After obtaining a set of generalized joint states coming from training
examples that describe a specific type of interaction between moving
objects, it is proposed to perform a training phase whose objective
consists in learning a switching DBN, see Fig.1, for modeling and
predicting the interactive dynamical system over time. Four steps to
learn the switching DBN are done, such that:

Learn vocabularies and dictionary. A discretization of the
state space data X̃k is performed. Two vocabularies (one per ob-
ject) are learned by using a self-organizing map (SOM) algorithm
[25]. SOMs receive X̃k data and produce a set of 4d-dimensional
discrete variables (neurons). We use two weights, β and α: where
α > β and β + α = 1. The first SOM favors the velocity (action)
components of object 1, α is associated with such component and
β is distributed to the rest of the data. Similarly, the second SOM
favors the velocity (action) components of object 2 (α components),
β is distributed to the rest of the data. Each SOM generates a vocab-
ulary composed of a set of prototypes where X̃k data is clustered.
Each prototype represents a region where quasi-linear models are
valid. Vocabularies are defined as:

Si = {si1, si2, . . . , siLi
}, (5)

where Li is the total number of prototypes associated with the
object i. sil indexes the cluster of generalized joint states that favors
the object i’s motion. Additionally, let ξsi

l
be the centroid, i.e., clus-

ter estimation vector, containing the 4d-dimensional system’s data
represented by the cluster sil .

It is proposed weighted distance to calculate the closest proto-
type to each joint state X̃k, such that:

Si
k = arg min

(
di(X̃

i
k,S

i)
)
, (6)

where Si
k ∈ Si. d(·, ·) is a weighted distance function between

two 2d-dimensional vectors. Such function considers the same pa-
rameters β and α with which the SOM is trained, such that:

di(X ,Y) =
√

(X − Y)ᵀΦi(X − Y), (7)
where X and Y are both 2d-dimensional vectors consisting of

position and velocity components. By using equation (7), it is pos-
sible to associate the current joint state of objects with the closer
discrete value from obtained SOMs. In the case of two objects, Φ1

and Φ2 can be written as:

Φ1 =

 βId 0d,d 0d,2d

0d,d αId 0d,2d

02d,d 02d,d βI2d

 ; Φ2 =

[
βI3d 03d,d

0d,3d αId

]
.

In a time instant k, each considered object i is represented by a pro-
totype Si

k ∈ Si. Active prototypes from different objects are con-
sidered together as an activated word. For the case of two objects,
i ∈ {1, 2}, the activated word at the time instant k is written as
Dk = [S1

k, S
2
k]ᵀ. Consequently, it is possible to the define a dictio-

nary containing possible couples of activated letters, such that:

D = {D1, D2, · · · , DM}, (8)
where Dm encodes a given identified word, M represents the total
number of words (letter combinations); and Dk ∈ D. As can be
seen, words are created based on the different prototypes activated at
the same time instant. D defines the whole system’s discretization.

Learn discrete transition models. By observing the activated
words over time. It is possible to estimate a set of temporal transition
matrices that encode the probabilities of passing from a current word
to another one. Such matrices take into consideration the time spent
in the current word for encoding transition probabilities, facilitating
the estimation of p(Dk|Dk−1, tk), where tk encodes the time spent
in the current word Dk−1.

Regions properties. A region Si
k is represented by the variables

ξSi
k

, QSi
k

and ψSi
k

, which encode respectively the mean value, the
covariance matrix of clustered states and a threshold value where
linear models are valid. By considering the threshold value ψsi

l
as a

distance from the mean superstates values ξsi
l
, it is possible to define

a certainty boundary where the proposed models are valid. Such a
threshold is defined at the letters’ level as:

ψsi
l

= 3 ∗
√

tr(Qsi
l
), (9)

where tr(·) represents the trace operator and Qsi
l

is the covariance

matrix of the region sil ∈ Si calculated based on training data that
falls in it.

Learn continuous models. This work expresses the evolution in
time of objects state based on quasi-constant velocity models. Such
type of motion can be written as a function of the previously obtained
regions Si, such that:

X̃i
k+1 = AX̃i

k +BUSi
k

+ wk, (10)

where B = [Id∆k Id]ᵀ is a control input model that maps ob-
jects’ actions (velocity estimations, see equation (3)) into following
states. d is the number of dimensions of trajectory data and In is
an identity matrix of dimension n. i ∈ {1, 2} indexes the objects
involved in the interaction. The variable USi

k
is a control vector that

encodes the object’s action when it is inside a region Si
k, such that:

USi
k

= [ẋSi
k

ẏSi
k
]ᵀ, (11)

where ẋSi
k

and ẏSi
k

are a sub-part of the centroid ξSi
k

related to ve-
locity components of object i. The transition model shown in equa-
tion (10) corresponds to a motivated dynamics whose effects are en-
coded in USi

k
and switched according to the activated region Si

k.
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Fig. 1: A switching DBN for interactive system. Arrows represent
conditional probabilities between the involved variables. Vertical ar-
rows facilitate to describe causalities between both, continuous and
discrete levels of inference and observed measurements. Horizon-
tal arrows explain temporal causalities between hidden variables. In
particular, orange arrow encodes the interaction of couples of objects
and green arrows represent the influence at a continuous level

2.2. Testing phase (Online interaction tracking)

To make inferences by employing the learned DBN, see Fig.1, we
use a probabilistic switching model called Markov Jump Particle fil-
ter (MJPF) [24]. Such filter uses a PF for inferring systems’ discrete
levels. Additionally, each considered particle employs a KF in that
tracks the generalized states of observed entities. In [24], the filter
is used to predict behaviors of single objects without considering the
effects of other entities on their motions. Here, we employ MJPF to
predict the interaction between couples of objects.

Each object has two inference levels: i) A continuous level,
where states are inferred based on measurements (green arrows).
Predictions of the type p(X̃i

k|X̃i
k−1) are performed by consider-

ing a bank of KFs built according to detected zones Si
k where

quasi-constant innovations are valid, see equation (10). ii) A dis-
cretization of the state space, where discrete estimations of the type
p(Dk|Dk−1) are computed by a particle filter. The relationship
between both levels is done by using the particle filter’s estimations
for choosing KF models.

MJPF models the evolution in time of objects’ states based on
a set of particles distributed according to obtained measurements.
Each particle is used for estimating future states by using a KF that
uses a quasi-constant velocity model. Particles that generate low
KF prediction error are propagated to the following time step. KFs’
dynamical models are written in terms of the current particle region,
see equation (10) and (11).

2.3. Abnormality measurement

This work proposes an abnormality measurement based on the
Hellinger distance [26] between predicted coupled generalized states
p(X̃i

k|X̃i
k−1) and the evidence p(Zk|X̃k), such that:

θik =
√

1− λi
k, (12)

where

λi
k =

∫ √
p(X̃i

k|X̃i
k−1)p(Zi

k|X̃i
k) dX̃i

k. (13)

As can be seen, for the case of i ∈ {1, 2}, two different ab-
normality measurements are obtained at each time instant k. It is
relevant to note that values of λi

k close to 0 indicate that observa-
tions match with predictions; whereas values close to 1 reveal the
presence of an abnormality.

3. RESULTS

For validating the proposed method, it is considered a set of sim-
ulated data where a moving object, here called follower, chases an-
other object, here named attractor. In training data, the motion of the
follower is described by the velocity field shown in equation (14).

~vf =
(
ψ +

r2

φ

)
r̂ + ω, (14)

where r represents the distance between both objects. ψ encodes the
final speed with which the follower reaches the attractor. φ models
the changes of follower’s speed while it approaches the attractor. r̂
is a unit vector that points at the attractor’s location. ω ∼ N (0, ζ).

The attractor motions consist of a horizontal dynamics along the
x axis at a fixed height point yatt. Accordingly, the attractor can
move in two senses: right or left inside the interval [x

(min)
att , x

(max)
att ].

The attractor’s dynamics is a continuous motion in one sense until it
reaches an interval boundary, then, it starts moving in the opposite
sense covering only the defined interval points. The speed of attrac-
tor movements is defined as |~va| = Ψ|~vf |, where Ψ ∈ [0, 1) which
guarantees that the follower reaches the attractor.

For learning a DBN structure, it is used attractor-follower data
that follow the rules described previously. The following parame-
ters are employed for simulation purposes: ψ = 0.85, φ = 700,
ζ = 0.1, Ψ = 0.75, yatt = 12, x(min)

att = −15 and x(max)
att = 15.

Results related to the capabilities of detecting abnormalities and en-
coding interacting rules are explained in detail as follows.

Abnormality detection. Testing trajectories are employed to
detect abnormalities. Such new trajectories could follow exactly the
same rules with which the DBN has been trained or they could con-
tain some changes induced to the presence of a static repulsive lo-
cated in the center of the scene. Accordingly, Fig.5a and Fig.5b show
normal (data that follows training set rules) and abnormal scenarios
respectively. In both plots, red and blue arrows represent the tra-
jectories of follower and attractor objects. The final position of the
attractor, i.e., when the follower reaches it, is displayed as a green
circle. The repulsive object is plotted as a yellow circle in Fig.5b.

Figs. 2 and 3 show the result of abnormality detection in case
of normal and abnormal interactions, Figs. 5a and 5b correspond-
ingly. As can be seen in Fig. 2, we have a low abnormality (less than
0.1), which suggests that learned DBN understands the interacting
rules of the simulator. From Fig. 3, it is possible to see how high
abnormality values are present in the initial portion of the trajectory
data, such behavior (yellow background) is due to the repulsive ob-
ject’s effects which alters the learned interaction model. Once the
follower overpasses the obstacle, measurements of abnormality goes
down (blue background), indicating that the follower-attractor inter-
act according to the previously learned rules.

Evaluation DBN. As the ground truth of simulated rules is
available, it is provided a visual comparison between theoretical
velocity fields and DBN motion estimations for different attractor-
follower configurations. Fig. 4 provides a qualitative comparison
between theoretical velocity fields generated based on equation (14)
and the corresponding prediction of the proposed DBN. Green cir-
cles represent the position of the attractor and arrows represent its
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Fig. 2: Results for normal objects’ interaction
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Fig. 3: Results for abnormal objects’ interaction
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Fig. 4: Theoretical and estimated velocity fields
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Fig. 5: Trajectories of interacting objects

generated velocity field. Empty spaces in DBN estimated fields are
points where the proposed method is not able to make predictions
due to lack of evidence data in such areas.

4. CONCLUSIONS

In this paper, we proposed a method for modeling interactions be-
tween moving objects. Proposed algorithms were analyzed and
tested by employing simulating data.

Results suggest that attractive and repulsive forces can be mod-
eled inside a DBN structure that codifies the normal behavior of ob-
served objects. Continuous and discrete variables are modeled by a
particle filter technique that uses a set that a set KFs that enable to
detect anomalies in different inference levels in an online fashion.

Our method demonstrated the capability to encode the interac-
tions of objects and employs such information for detecting anoma-
lies due to previously unseen forces. Qualitative comparisons be-
tween the simulated and encoded DBN interaction rules are pro-
vided, demonstrating that the proposed models are capable of encod-
ing observed behaviors into probability distributions. Possible future
works include characterizing more complex interactions where more
forces/objects are involved and understand the interplay of real mov-
ing objects inside DBN structures.
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