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ABSTRACT

Many real-world tasks involve identifying signals from data
satisfying background or prior knowledge. In domains like
materials discovery, due to the flaws and biases in raw ex-
perimental data, the identification of X-ray diffraction (XRD)
signals often requires significant (manual) expert work to find
refined signals that are similar to the ideal theoretical ones.
Automatically refining the raw XRD signals utilizing simu-
lated theoretical data is thus desirable. We propose imita-
tion refinement, a novel approach to refine imperfect input
signals, guided by a pre-trained classifier incorporating prior
knowledge from simulated theoretical data, such that the re-
fined signals imitate the ideal ones. The classifier is trained
on the ideal simulated data to classify signals and learns an
embedding space where each class is represented by a proto-
type. The refiner learns to refine the imperfect signals with
small modifications, such that their embeddings are closer to
the corresponding prototypes. We show that the refiner can be
trained in both supervised and unsupervised fashions. We fur-
ther illustrate the effectiveness of the proposed approach both
qualitatively and quantitatively in an X-ray diffraction signal
refinement task in materials discovery.

Index Terms— refinement, classification, X-ray diffrac-
tion signals, embeddings, neural nets

1. INTRODUCTION

Many real-world tasks involve identifying meaningful sig-
nals satisfying background or prior knowledge from limited
amount of labeled data [1]. Furthermore, the raw data are of-
ten corrupted with noise [2], which makes it even harder to
identify meaningful signals. On the other hand, in many do-
mains like scientific discovery, though the experimental data
might be flawed or biased, ideal data can often be synthe-
sized easily [3, 4]. It is thus desirable to incorporate knowl-
edge from ideal data to refine the quality of the raw signals to
make them more meaningful and recognizable.

For instance, in materials discovery, where we would like
to discover new materials, each material is composed of one
or more crystal structures (also simply called phases), where
each phase is distinguished by a unique X-ray diffraction

(XRD) signal. Materials scientists are interested in not only
predicting the properties of materials [5], but also identifying
their crystal structures or phases, which should be similar to
(ideal) theoretical phases [6]. Phase identification is challeng-
ing because the raw phases from experiments are often mixed
with each other and further corrupted with noise. Currently
it is mainly a manual task, a key bottleneck of the materials
discovery process.

In related work, data denoising and restoration methods
[7, 8, 9] often require paired clean and noisy data for train-
ing, which is not available in our setting, since only theoreti-
cal (simulated) and noisy experimental data are given and the
correspondences are unknown. Similarly, style transfer[10],
also requires paired images or cycle consistency. Recently,
GAN-based domain adaptation models [11, 12, 13] bring a
new perspective to reduce the need for the correspondence
supervision. But these methods mainly focus on prediction
instead of refining the quality of the imperfect input signals.

We propose a novel approach called imitation refine-
ment, which improves the quality of imperfect signals by
imitating ideal signals, guided by a classifier with prior
knowledge pre-trained on the ideal dataset. The classifier
incorporates such knowledge by learning a meaningful em-
bedding space. Imitation refinement applies small modifica-
tions to the imperfect signals such that (1) the refined signals
have better quality and are similar to the ideal signals and
(2) the pre-trained classifier can achieve better classification
accuracy on the refined signals. We show that both objectives
can be achieved even with limited amount of data.

The main contribution of our work is to provide a novel
framework for imitation refinement, which can be used to im-
prove the quality of imperfect signals under the supervision
from a classifier containing prior knowledge. Our second con-
tribution is to find an effective way to incorporate the prior
knowledge from the ideal data into the classifier. The third
contribution of this work is to provide a way to train the re-
finer even if the imperfect inputs have no supervision.

Using a materials discovery dataset, we show that for the
imperfect input experimental phases, the refined phases are
closer to the quantum-mechanically computed ideal phases.
In addition, we achieve higher classification accuracy on the
refined phases. We show that even in the unsupervised case,
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Fig. 1: Prototypical classifier not only predicts labels, but also
learn a meaningful embedding space. The center of the cluster
for each class is called prototype.

the refinement can help improve the quality of input signals.

2. IMITATION REFINEMENT

2.1. Notation

In imitation refinement, we are given an ideal datasetDideal =
{(xideali , yideali )}Ni=1. Each ideal d-dimensional feature
xideali ∈ X ideal ⊆ Rd is a realization from a random vari-
able Xideal, and the label yideali ∈ Y , where Y is a discrete
set of classes {0, 1, ..., l} in this problem. In addition, we
are also given the imperfect training data Dimp. In the su-
pervised/targeted case, Dimp = {(ximpi , yimpi )}Mi=1 where
ximpi ∈ X imp ⊆ Rd is a realization of a random variable
Ximp and the labels yimpi ∈ Y . In the unsupervised/non-
targeted case, Dimp = {ximpi }Mi=1 where ximp ∈ X imp
and the labels are not available. We assume there is a slight
difference [14, 15] between X imp and X ideal.

2.2. Problem Description

Our goal is to learn a function R : X imp → X rfd, where
X rfd ⊆ X ideal, that refines the imperfect signals into ideal
signals (e.g. the theoretically computed corresponding sig-
nals), with the guidance from a pre-trained classifier C. C is
the composition Gψ ◦ Fθ where Fθ : X ideal → Rm is an
embedding function (m-dimensional embedding space) and
Gψ : Rm → Y is a prediction function. For the inputs x, we
hope C(R(x)) can give better results than C(x), andR(x) has
better quality than x, by imitating the signals in X ideal.

2.3. Pre-trained Prototypical Classifier

Inspired by recently proposed prototypical networks [16], the
classifier is trained to learn a meaningful embedding space to
better incorporate the prior knowledge as well as the class pre-
diction, where each class can be represented by a prototype
embedding and embeddings from each class form a cluster
surrounding the prototype. The classifier is thus called proto-
typical classifier.

To learn such a prototypical classifier, besides the class
prediction loss given by a classification loss LC(θ, ψ) =∑
i `(Gψ(Fθ(xideali )), yideali ) where `(·) can be the cross

entropy loss H(·) or other supervised losses, we further
add a loss defining the distances to the ground-truth pro-
totypes in the embedding space given a distance function

Algorithm 1 One epoch in the training for the refiner when
labels are available
Input: Imperfect training dataset Dimp =

{(ximpi , yimpi )}Mi=1 where yimpi ∈ {1, ..., l}, max num-
ber of batches (T ), the batch size (Nc), the prototypical
classifier C and the prototypes ck.
Output: RefinerRφ.

1: for t=1..T do
2: Sample Nc samples from training set Dimp :

{xi, yi}Nci=1.
3: Let ri = R(xi) be the refined inputs.
4: Let ei = F(ri) be the embedded refined inputs.
5: Let ci = G(ei) be the predicted labels.
6: Compute LR(φ) in equation (2)

• `pred = 1
Nc

∑
iH(ci, yi)

• `proto = 1
Nc

∑
i− log

exp(−δ(ei,cyi ))∑
k′ exp(−δ(ei,ck′ ))

• `reg = 1
Nc

∑
i ||Ψ(ri)−Ψ(xi)||p

7: Update parameters φ through back-propagation based
on the loss LR(φ).

δ : Rm × Rm → [0,+∞):

LF (θ) =
∑
i

− log
exp(−δ(Fθ(xideali ), cyideali

))∑
k′∈Y exp(−δ(Fθ(xideali ), ck′))

(1)

Fig. 1 gives an overview of the prototypical classifier. In each
training step, the batch of samples are randomly selected from
each class to ensure each class has a least one sample. The
prototype of each class is randomly initialized and updated
by the mean of the embeddings from the class and the pro-
totype from last batch. More specifically, Prototypes are up-
dated through ctk ← 1

|Didealk |+1
(ct−1k +

∑
yideali =k Fθ(xideali ))

whereDidealk is the subset ofDideal containing all the samples
from class k. The batch loss is computed via Lbatch(θ, ψ)←
LC(θ, ψ) +λLF (θ). Then we can update the parameters θ, ψ
by taking an Adam[17] step on the batch loss.

2.4. Imitation Refiner

The pre-trained prototypical classifier is then applied to guide
the training of the refiner Rφ : X imp → X rfd with learn-
able parameters φ. We propose to learn φ by minimizing a
combination of three losses:

LR(φ) =
∑
i

(`pred(φ;ximpi ,Y) + α`reg(φ;ximpi )

+ β`proto(φ;ximpi ,F(X ideal))).
(2)

where ximpi is the ith imperfect training sample andF(X ideal)
is the embedding space formed by the embeddings of sam-
ples from the space X ideal. α and β are coefficients that trade
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Fig. 2: The refiner Rφ is trained in an end-to-end fashion.
The pre-trained classifier C provides `proto and `pred. Loss
`reg is given by the difference between the refined input and
the raw input in either the raw space or some feature space.

off different losses. They are set to 0.01 and 1 respectively
by grid search on them. Note that once the classifier C is
trained, it is fixed along with the prototypes ck’s during the
training of the refiner. Furthermore, C provides loss functions
(`pred and `proto) to the training of Rφ. The refiner can be
trained in both targeted and non-targeted fashions, depending
on whether the labels of the imperfect training samples are
provided or not. In the targeted case, prediction loss `pred is
the loss given by the difference between the predicted labels
of the refined input signals and the ground-truth labels:

`pred(φ;ximpi ,Y) = H(C(Rφ(ximpi )), yimpi ) (3)

where H is the cross-entropy loss. In the non-targeted case,
we simply change the cross-entropy loss to the entropy loss,
H(C(Rφ(ximpi ))), to represent the uncertainty of the classi-
fier C on the refined signals. The goal is to minimize the en-
tropy to force the refiner to learn more meaningful refined
signals which could be better recognized by C.

We further introduce the prototypical loss `proto to fur-
ther guide the refinement towards the corresponding proto-
types in the embedding space, which is more robust. In the
targeted case, the prototypical loss is given by the negative
log-likelihood on the distances between the embeddings of
the refined signals and the ground-truth prototypes:

`proto(φ;ximpi ,F(X ideal))

=− log
exp(−δ(F(Rφ(ximpi )), cyimpi

))∑
k′ exp(−δ(F(Rφ(ximpi )), ck′))

(4)

In the non-targeted case, we use entropy loss:

`proto(φ;ximpi ,F(X ideal)) =

l∑
k=1

−pimpi,k log pimpi,k (5)

where pimpi,k =
exp(−δ(F(Rφ(ximpi )),ck))∑
k′ exp(−δ(F(Rφ(ximpi )),ck′ ))

.

Note that for an imperfect sample ximpi , we are looking
for an ideal signal in X ideal that is most related to ximpi . R
should modify the input as little as possible to remain the con-
tents in the imperfect input samples [10]. Thus, we introduce
the loss `reg to regularize the changes made for the input:

`reg(φ;ximpi ) = ||Ψ(R(ximpi ))−Ψ(ximpi )||p (6)

where || · ||p is p-norm and Ψ maps the raw input into a fea-
ture space. Ψ can be an identity map Ψ(x) = x or more
abstract features such as the feature maps after the first or
second convolution layer. This loss works for both targeted
and non-targeted cases since it does not rely on the labels.
Such regularization can also help avoid learning an ill-posed
mapping from X imp to X ideal such as a many-to-one map-
ping that maps all the imperfect signals from class k to one
ideal signal in class k regardless the raw contents in the im-
perfect signals. This mapping could achieve very small `pred
and `proto but would result in a trivial mapping.

The refiner R is trained in an end-to-end way as de-
scribed above and all the parameters are updated through
back-propagation. The pseudocode to train the refiner is pro-
vided in Algorithm 1 in the targeted case. In the non-targeted
case, the algorithm is simply replacing the targeted losses
with non-targeted losses as described. The overall structure
of the refiner is shown in Fig. 2.

3. EXPERIMENTS

High-throughput combinatorial materials discovery is a ma-
terials science task whose intent is to discover new materials
using a variety of methods including X-ray diffraction sig-
nal analysis[18]. The raw imperfect X-ray diffraction signals
(XRD) from experiments are often unsatisfiable because the
data corruption could happen in any step of the data process-
ing. In this work, we show how imitation refinement (IR) can
help refine XRDs to approach the ideal signals from com-
putational models to validate that useful domain knowledge
is learned by the pre-trained classifier. We show our perfor-
mance via two metrics. First, the refined XRDs can achieve
better classification accuracy even if the classifier is fixed.
Second, we directly show the improvement of the quality of
the refined XRDs both qualitatively and quantitatively. We
measure the difference between the ground-truth XRDs and
refined XRDs on `1 loss, `2 loss, KL-divergence and cross
correlation. Qualitative results are also shown in Fig.4.
Dataset: The dataset used in this application is from the Ma-
terials Project [19]. The ideal simulated data have approxi-
mately 240,000 samples from 7 classes. The imperfect dataset
has only 1,494 experimental samples from 7 classes. Both
datasets are divided into training and test data according to
the ratio 9:1 for the classifier and refiner respectively.
Implementation details: The refiner network, Rφ, is U-Net
[20]. For the classifier C, we use two structures DenseNet [21]
and VGG [22] to show that the imitation refinement frame-
work works for different classifiers.
Classification results: The baselines are given by the classi-
fiers pre-trained on the ideal dataset tested on the imperfect
data. The accuracies from standard and prototypical classi-
fiers based on VGG-19 model are 68.54% and 69.01% re-
spectively. Similarly, classifiers based on DenseNet model
give 67.74% and 70.82%. Table 1 presents the label predic-
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model accuracy
DWT 71.28%

ADDA 73.78%
GTA 73.18%

IR
VGG T 73.98%

NT 71.63%

DenseNet T 80.05%
NT 74.74%

Table 1: Different accuracies from different methods includ-
ing our Imitation Refinement (“IR”). We give the results
in both targeted (“T”) and non-targeted (“NT”) cases. Our
method outperforms other methods.

Models `proto `pred `reg Accuracy
UNet+DenseNet Y N Y 79.33%
UNet+DenseNet N Y Y 75.76%
UNet+DenseNet Y Y Y 80.05%

Table 2: The combination of 3 losses gives the best accuracy.
“Y” stands for yes and “N” stands for no.

(a) GTA embedding space (b) Our embedding space

Fig. 3: TSNE visualization of the embedding spaces learned
by GTA and imitation refinement. Each color denotes a class.

tion accuracies from different methods or settings. Discrete
wavelet transform [23] is a widely used signal denoising tech-
nique in materials science domain. ADDA [12] and GTA [13]
are recently proposed adversarial domain adaptation method
aiming at learning different feature extraction networks for
two similar domains. Both use DenseNet as the classifier. All
the methods use the same amount of supervision (data and la-
bels from the training data of ideal and imperfect datasets).
Further, in the non-targeted cases, the supervision from the
imperfect training data would not be given.
Ablation study: To show the combination of the different
losses is necessary and meaningful, we show the results in
Table 2 when either `proto or `pred is ablated. Note that all
the reported numbers are averaged over 5 independent runs.
Quantitative results:Regarding the quality of refined XRDs:
We directly measure the differences between refined XRDs
and the ground-truth theoretical XRDs on 4 metrics, `1, `2,
KL-divergence and cross correlation. We compute medians
of the differences over all the test data (Table 3). Imitation
refinement outperforms other methods. We also present the
embedding spaces learned by GTA and IR (Fig. 3).
Qualitative analysis: As shown in Fig.3, IR learns more
meaningful embedding space. Fig.4 gives two randomly cho-
sen examples of the raw XRD, refined XRD and the ground-
truth XRD for materials NbGa3 and Mn4Al11.

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

Fig. 4: The visualization of the raw, refined and ground-truth
XRDs for NbGa3 and Mn4Al11 (randomly chosen). We can
see imitation refinement can add missing peaks, remove re-
dundant peak and denoise the XRD pattern from learning.

Models `1 `2 KL NCC
Raw XRD 26.749 1.718 12.195 20.870

DWT 25.642 1.706 11.972 20.884
GTA 90.914 6.861 23.306 20.618

IR-VGG 26.200 1.603 11.686 20.956
NT IR-VGG 26.034 1.630 12.545 21.232
IR-DenseNet 25.101 1.671 11.945 22.481

NT IR-DenseNet 27.235 1.754 11.834 21.079

Table 3: Differences between the refined XRDs and the
ground-truth XRDs on metrics `1, `2,KL and normalized
cross correlation (NCC). The difference between the raw
XRDs and the ground-truth XRDs gives the baseline. The
differences shown in the table are the medians over all the
test data. For `1, `2,KL, the smaller the better. For NCC, the
larger, the better. The best results are shown in bold.

4. CONCLUSIONS

Imitation refinement improves the quality of imperfect signals
by imitating ideal signals. Using the prior knowledge cap-
tured by a prototypical classifier trained on an ideal dataset,
a refiner learns to apply modifications to imperfect signals to
improve their qualities. A general end-to-end neural frame-
work is proposed to address this refinement task and gives
promising results in an XRD signal refinement task and re-
fines the XRDs to be closer to the ground-truth. This work
has a potential to save lots of manual work for material scien-
tists. We also show that imitation refinement could work even
if labels are not provided. Imitation refinement is adaptable
to other similar situations in scientific discovery in chemistry,
physics, etc. We hope our work will stimulate additional imi-
tation refinement efforts.
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