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ABSTRACT

Regularization is crucial to the success of many practical deep
learning models, in particular in frequent scenarios where
there are only a few to a moderate number of accessible
training samples. In addition to weight decay, noise injection
and dropout, regularization based on multi-branch architec-
tures, such as Shake-Shake regularization, has been proven
successful in many applications and attracted more and more
attention. However, beyond model-based representation aug-
mentation, it is unclear how Shake-Shake regularization helps
to provide further improvement on classification tasks, let
alone the baffling interaction between batch normalization
and shaking. In this work, we present our investigation on
Shake-Shake regularization. One of our findings illustrates
the phenomenon that batch normalization in residual blocks
is indispensable when shaking is applied to model branches,
along with which we also empirically demonstrate the most
effective location to place a batch normalization layer in a
shaking regularized residual block. Based on these findings,
we believe our work is beneficial to future studies on the
research topic of refining control for model-based representa-
tion augmentation.

Index Terms— Shake-Shake Regularization, Adversarial
Training, Discriminative Feature Learning, Control for Rep-
resentation Augmentation

1. INTRODUCTION

Deep convolutional neural networks have been successfully
applied to several pattern recognition tasks such as image
recognition [1], machine translation [2] and speech emotion
recognition [3]. Currently, to successfully train a deep neu-
ral network, one needs either a sufficient number of training
samples to implicitly regularize the learning process, or em-
ploy techniques like weight decay and dropout [4] and their
variants to explicitly keep the model from over-fitting.
However, since the introduction of batch normalization
[5], the gains obtained by using dropout for regularization
have decreased [5, 6, 7]. A recent work dedicated to study
the disharmony between dropout and batch normalization
[8] suggests that dropout introduces a variance shift between
training and testing, which cripples any following batch
normalization layers and severely limits the application of
successful architectures such as ResNet/ResNeXt or the ap-
plication of dropout to the top-most fully connected layers.
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Yet, multi-branch architectures have emerged as a promising
alternative for regularizing convolutional layers.

Regularization techniques based on multi-branch ar-
chitectures such as Shake-Shake [9] and ShakeDrop [10]
have delivered impressive performances on standard image
datasets such as the CIFAR-10 [11] dataset. In a clever
way, both of them utilize multiple branches to learn differ-
ent aspects of the relevant information and then a summa-
tion in the end follows for information alignment among
branches. Also, both Shake-Shake and ShakeDrop regular-
izations emphasize the important interaction between batch
normalization and shaking. In our previous work on acoustic
sub-band shaking [12] and stochastic Shake-Shake regular-
ization [13] for affective computing from speech, we found
that in a fully pre-activation architecture without a batch nor-
malization layer right before shaking, the shaking mechanism
contributes much more to constraining the learning process
than to boosting the generalization power. All these findings
indicated there is a close interaction between shaking and
batch normalization. However, these studies do not give an
explanation for the crucial role and location of batch nor-
malization in a shaking regularized architecture, other than a
brief discussion of the strength of shaking.

In this work, we study the Shake-Shake regularized
ResNeXt for classification tasks to acquire a better under-
standing of the reported observations. Specifically, we inves-
tigate and come up with an explanation, beyond model-based
representation augmentation, for the ability of shaking reg-
ularization to improve classification tasks and for its crucial
interaction with batch normalization. In order to achieve this
goal, we conduct two sets of ablation studies on MNIST [14]
and CIFAR-10 datasets, respectively, with different configu-
rations of residual blocks. The first set of experiments on the
MNIST dataset aims to clarify the role of batch normaliza-
tion in shaking regularized residual blocks; the second set of
experiments on the CIFAR-10 dataset measures the effective-
ness of batch normalization with respect to it proximity to the
shaking layer.

2. SHAKE-SHAKE REGULARIZATION AND
DISCRIMINATIVE FEATURE LEARNING

2.1. Shake-Shake Regularization

Shake-Shake regularization is a recently proposed technique
to regularize training of deep convolutional neural networks
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for image recognition tasks. This regularization technique
based on multi-branch architectures promotes stochastic mix-
tures of forward and backward propagations from network
branches in order to create a flow of model-based adversar-
ial learning samples/gradients during the training phase. An
overview of a 3-branch Shake-Shake regularized ResNeXt is
depicted in Fig. 1. Shake-Shake regularization adds to the ag-
gregate of the output of each branch an additional layer, called
the shaking layer, to randomly generate adversarial flows in
the following way:

N
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where in the forward propagation for a = [, - - - , an] sam-
pled from the (N —1)-simplex (Fig. 1 (a))
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while in the backward propagation for b = [31, -+, Bn]
sampled from the (/N—1)-simplex and g the gradient from
the top layer, the gradient entering into B, (z) is 8,g (Fig. 1
(b)). At testing time, the expected model is then evaluated for
inference by taking the expectation of the random sources in
the architecture (Fig. 1 (c)).
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Fig. 1: An overview of a 3-branch Shake-Shake regularized
residual block. (a) Forward propagation during the training
phase (b) Backward propagation during the training phase (c)
Testing phase. The coefficients v and 3 are sampled from the
uniform distribution over [0, 1] to scale down the forward and
backward flows during the training phase [9].

It has been shown that shaking with the absence of both
batch normalization layers could cause the training process
to diverge. One proposed remedy to this situation in [9] is
to employ a shallower architecture and more importantly to
reduce the range of values « can take on, i.e. to reduce the
strength of shaking.

2.2. End-to-End Discriminative Feature Learning

Recently, there has been a trend to focus on the design of loss
functions so that a neural network supervised by such a loss
function is able to formulate more discriminative features. In-
spired by the contrastive loss [16] and the triplet loss [17],

a series of works reviewed the interpretation of the softmax
loss as a normalized exponential of inner products between
feature vector and class center vectors and came up with var-
ious modifications, including the large-margin softmax [18],
SphereFace [19], CosFace [20], ArcFace [21] and Centralized
Coordinate Learning (CCL) [22].

Different from the other four modifications, CCL dis-
tributes features dispersedly by centralizing the features to
the origin of the space during the learning process so that
feature vectors from different classes can be more separable
in terms of a large angle between neighboring classes, and
ideally symmetrically distributed in the whole feature space.
The CCL loss is presented as follows:

N .
-1 e®(xi) cos(By;)
L= N zZ: log ZJK 2 (xi) cos(8y;) .
where
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O(x;); = ——. ?
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®(x;); and x;; are j-th coordinate of ®(x;) and x;, respec-
tively, and 6,, is the angle between x; and the class center
vector wy,. It is immediately clear that Eq. (2) resembles the
famous batch normalization:

Xij — OJ'

O(xi); =" + B 3)

gj
except that the trainable affine transformation, defined by ~
and f3, after the normalization are missing in the formulation.
In Eq. (2) and (3), ¢ and o are running standard deviation and
running mean updated per mini-batch during training.

3. SHAKING WITH DIFFERENT
CONFIGURATIONS OF RESIDUAL BLOCKS

To demonstrate the close interaction between shaking and
batch normalization in representation learning, we present
two ablation studies, one on the MNIST dataset and the other
on the CIFAR-10 dataset. For both sets of experiments, we
employ the ordinary softmax loss to examine the effective-
ness of batch normalization in representation learning when
it is not coupled with the softmax function.

3.1. Embedding Learning on MNIST and CIFAR-10

The first set aims to visualize representation learning under
the influence of batch normalization and shaking. We employ
a ResNeXt (20, 2 x 4d) architecture, where the last residual
block reduces the feature dimension to 2 for the purpose of
visualization. Fig. 3 depicts embeddings by four layouts of
residual blocks, where the top and bottom rows correspond to
embeddings of the training and testing samples, respectively.
From left to right, the columns represent embeddings learned
by models of fully pre-activation (Fig. 2(c) PreAct) without
shaking, PreAct with shaking, fully pre-activation + BN (Fig.
2(d) PreActBN) without shaking and PreActBN with shak-
ing, respectively.

3323



Addition

Addition Addition Addition

Xi41 X1 Xj41 Xi41

(b) ReLU-only
pre-activation

(a) original (c) full pre-activation (d) pre-activation + BN

Fig. 2: Shaking regularized ResNeXt architectures with different layouts introduced in [15]
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Fig. 3: MNIST embeddings based on different layouts of residual blocks. We set the feature dimension entering into the output
layer to be two and train them in an end-to-end fashion. The top and bottom rows depict embeddings of the training samples
extracted in the train mode (i.e. « € [0,1]) without updating parameters, and testing samples extracted in the eval mode
(a = 0.5), respectively. (a,e) fully pre-activation (Fig. 2(c)) without shaking (b,f) fully pre-activation (Fig. 2(c)) with shaking
(c,g) fully pre-activation + BN (Fig. 2(d)) without shaking (d,h) fully pre-activation + BN (Fig. 2(d)) with shaking

The first column serves as the baseline in this set of ex-
periments. Immediately, we can observe a severe degrada-
tion in separability when applying shaking to PreAct, com-
paring Fig. 3(a,e) with Fig. 3(b,f). Also notice that shak-
ing without a directly preceding batch normalization could
perturb or destroy the symmetric distribution, which is obvi-
ous when there is no shaking (the symmetry in Fig. 3(a,e)).
This is rather interesting as batch normalization still exists
in PreAct residual block, only not directly connected to the
shaking layer. It seems the exploration encouraged by shak-
ing around each class center has expanded its coverage but
without a directly preceding batch normalization to maintain
a good dispersion between classes, each class only expands
to overlap with neighboring classes, and the resulting distri-
bution is heavily tiled. Consequently, PreAct with shaking
delivers a much inferior performance compared to PreAct.
The comparison between PreAct (Fig. 3(a,e)) and PreActBN
(Fig. 3(c,g)), both without shaking, demonstrates the effec-
tiveness of CCL in discriminative feature learning although it
is not coupled with the loss function. In Fig. 3(c), not only
does it maintain a symmetric distribution of classes, but also
it encourages each class to expand outward and to leave more
margin between neighboring classes. As a result, PreActBN

without shaking is able to reach a better performance com-
pared to the baseline.

Finally, PreActBN with shaking (Fig. 3(d,h)), on the con-
trary, does not lead to a larger margin between classes as Pre-
ActBN without shaking does. On the other hand, it seems
that the shaking has expanded the coverage of each class so
that all of them are directly adjacent to each other with a min-
imal or zero margin. We could also observe that, although
batch normalization tries to maintain a symmetric distribu-
tion of feature vectors, some of the classes in Fig. 3(d,h) are
slightly tilted around the outer most region. However, the
most salient difference is the distribution of testing samples,
where each class becomes more compact. The performance
of PreActBN is therefore the highest among all of the mod-
els. Since in supervised learning we assume testing samples
are drawn from a similar or the same distribution as train-
ing samples, the majority of testing samples are mapped to
embeddings close to the center of class, where most orig-
inal training samples are mapped to, and thus the distribu-
tion seems more compact. In Fig. 4, from the comparison of
training embeddings in the train and eval modes, it is visually
clear that shaking is expanding the coverage of training em-
beddings. To quantitatively show that this is the case, for each
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layout we calculate distances of the original training embed-
dings to their respective class center vectors in the eval mode
and plot the percentage of class samples within distances rel-
ative to the largest distance in the class that is calculated in
the train mode, in Fig. 5. It is clear that with shaking most of
the original training embeddings are concentrated around the
class center. For example, almost 100% of original training
embeddings lies within 0.3 x largest distance for PreActBN
with shaking and just a small number of original training sam-
ples are lying close to the boundaries.
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Fig. 4: Embeddings of training samples extracted in the (a)
train (b) eval mode from PreActBN with shaking
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Fig. 5: Percentage of class samples within in a relative dis-
tance to class center

The second set of experiments on CIFAR-10 is designed
to measure the contribution of batch normalization in residual
blocks with respect to it proximity to the shaking layer. In
order to do so, we remove the first two batch normalization
from the PreActBN residual block and rename the new one,
the BN-Shake residual block (ReLU-Conv-ReLu-Conv-BN-
Mul), assuming shaking is applied. Along with PreActBN
and PreAct, by presenting BN-Shake, all of them with shak-
ing, we are able to quantitatively demonstrate the crucial lo-
cation of batch normalization in a shaking regularized archi-

tecture.
We modify the open-sourced Torch-based Shake-Shake

implementation1 that was released with [9] to build these
three architectures. All of the rest of parameters such as the
cosine learning rate scheduling and the number of epochs
remain unchanged. Only the part that involves residual block
definition is modified to serve our need. We run each ex-
periment for three times to obtain a robust estimate of the
performance using different random seeds. Table 1 presents

Uhttps://github.com/xgastaldi/shake-shake.

Model Depth  Params  Error (%)

ResNeXt (29, 16 x 64d) [23] 29 68.1M 3.58
Wide ResNet [6] 28 36.5M 3.80
Shake-Shake (26, 2 x 96d) [9] 26 26.2M 2.86
Shake-Shake (26, 2 x 64d) [9] 26 11.7M 2.98
ResNeXt (26, 2 x 64d) [9] 26 11.7M 3.76
PreActBN (26, 2 x 64d)T 26 11.7M *2.95
BN-Shake (26, 2 x 64d) 26 11.7M *3.65
PreAct (26, 2 X 64d)T 26 11.7M *6.92

* average over three runs
T with shaking

Table 1: Test error (%) and model size on CIFAR-10

the results of our experiments as well as the quoted per-
formances on CIFAR-10 from [9]. Note that Shake-Shake
ResNeXt in [9] is based on the ReLu-only pre-activation
residual block (Fig. 2(b) RPreAct) and is thus different from
PreAct we have here. Although the ResNeXt-26 2 x 64d is
based on the RPreAct structure, with a shallow depth of 26,
it should be comparable to one that is based on the PreAct
when no shaking is applied [15]. Therefore, we also take it as
the baseline for the pre-activation layout.

The performance of PreActBN with shaking (2.95%,
mean of 2.89%, 3.00% and 2.95%) is comparable to the
reported performance of RPreAct with shaking (2.98%),
where both of them have a directly preceding batch normal-
ization layer before shaking. As expected, the performance
of PreAct with shaking (6.92%, mean of 6.76%, 6.82% and
7.19%) is much worse than every model in Table 1, includ-
ing the baseline ResNeXt-26 2 x 64d. On the other hand,
the result of BN-Shake (3.65%, mean of 3.56%, 3.76% and
3.62%) is rather positive. With only one batch normalization
layer, it outperforms not only PreAct with shaking but also
the baseline ResNeXt-26 2 x 64d. This finding highlights
the fact that the directly preceding batch normalization plays
a crucial role in keeping a good dispersion of intermediate
representations when shaking is applied to explore unseen
feature space, while the dispersing effect of any other batch
normalization that is separated by convolutional layers from
the shaking layer is reduced or only auxiliary.

4. CONCLUSION

Based on these two sets of experiments, it is safe to state
that in the close interaction between batch normalization and
shaking, batch normalization is mainly responsible for keep-
ing a dispersed symmetric distribution of intermediate rep-
resentations from perturbation by shaking, while the shak-
ing mechanism expands the coverage of augmented training
samples to force the distribution of true training samples, and
hence that of true test samples, to be more compact, which is
exactly the design objective behind end-to-end representation
learning. Now that we have learned the essential contribution
of shaking to improving classification tasks, one of our future
directions would be to apply shaking in an efficient way to
reduce the number of epochs (currently 1800 on CIFAR-10)
to a reasonable one, without sacrificing the performance.
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