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ABSTRACT

We study media presence detection, that is, learning to

recognize if a sound segment (typically lasting for a few sec-

onds) of a long recorded stream contains media (TV) sound.

This problem is difficult because non-media sound sources

can be quite diverse (e.g. human voicing, non-vocal sounds

and non-human sounds), and the recorded sound can be a

mixture of media and non-media sound.

Different from speech recognition, where the recognizer

needs to detect local phonetic variation, the key features

used to distinguish media and non-media sounds are non-

local features. Motivated by this, we propose a hierarchical

model to learn representation of each pre-chunked seg-

ment within a long recorded stream jointly, and encourage

every local representation to be not sensitive to variations

within each segment. We also further explore the effects

of techniques including stream based normalization and

iteratively imputing missing labels of training dataset. Ex-

perimental results indicate that our proposed contextual

based methods are effective for media presence detection.

Index Terms— Media Presence Detection, Contextual

Based Model, Invariant to local variants

1. INTRODUCTION

Media presence detection [1] refers to the task of recogniz-

ing if there is any media sound in a (typically short) sound

snippet. Being able to distinguish media sound and human

sound has significant values for many real-life applications

and products. For example, to reduce media related false

triggers for virtual assistants such as Amazon Alexa, Google

Assistant and Apple Siri. It also helps with analyzing user be-

havior for media content consumption. This concrete topic

has close connection to a few popular research fields, in-

cluding audio/video scene understanding and audio event

detection.

For audio scene understanding, there are a bunch of works

in the literature addressing the problem of recognizing the

background (e.g. in mall, park or restaurant) of the acous-

tic signals [2, 3, 4, 5]. [2] studies what kind of acoustic

features would be useful for acoustic background under-

standing. Different machine learning models, like Hidden

Markov Model (HMM) [6], Support Vector Machine (SVM)

[7] and Neural Networks (more specifically, in combination

of Long Short-Term Memory (LSTM) [8] and Convolutional

Neural Network (CNN) [9]) are used in [3, 4, 5] respectively

for background understanding. [3] uses Mel-Frequency

Cepstral Coefficients(MFCCs) while [4, 5] also explore cep-

stral, energy and voicing features besides spectrogram. The

biggest difference between media presence detection and

these acoustic background understanding works is that,

media presence detection focuses on determining the exis-

tance of media sounds in a robust way, independent of what

kind of background it is. Video genre analysis/classification

[10, 11] typically have the same goal of audio scene under-

standing, where audio is a useful second modality in order

to enhance the performance.

Audio event detection [12, 13, 14] focuses on identifying

occurrences of events of interest (e.g. glasses breaking,

coughing, gun shoot etc), or generic user activities in the

given audio streams. The major difference between me-

dia presence detection and audio event detection is that,

audio event detection more focuses on distinguishing a

concrete type of event from the background. For example,

audio event detection works on recognizing “dog barking”

from other sounds and also silence. While media presence

detection works on distinguishing “real dog barking” and

“recorded dog barking”.

Similar to recent audio event detection/classification works

[15, 16], we also use weakly labeled data (e.g. indicating me-

dia presence or not without specifying the concrete bound-

ary) for our media presence detection task. Our input data

contains long-duration streams, each has been chunked

into weakly labeled short (e.g. 5 second) segments.

A piece of recorded audio consists of both audio-level char-

acteristics (e.g. speaker identity, F0, dynamic range and

band limiting) and local information (e.g phonetic con-

tent) [17]. Key characteristics to distinguish if a sound is

from media (TV) source or non-media sources are features

that are shared by the whole piece of audio instead of lo-

cal variation. This motivates us to learn a representation
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that ignores the small local variations. We use bidirectional

pyramidal LSTM [18, 19] (e.g. stacked bidirectional LSTM

[8] with subsequent layer subsamples hidden states) on top

of a residual network to extract representations for each

labeled snippet.

Existing approaches (e.g. [1]) for media presence detection

are typically based on chunked short duration audio (e.g.

5-second or 10-second pre-chunked short audio segments),

which do not model longer contextual information. How-

ever, utilizing (very large) contextual information can boost

the confidence of prediction, considering that media is typ-

ically be on/off for a continuous long duration. Besides,

seeing contextual information can help a model to realize

the on/off switch of media presence events in a large time

scale. We would use a uni-directional LSTM to learn the

contextual representation (historical memory) for a given

stream, and the contextual representation is used together

with local representation for per segment media presence

detection. Such kind of hierarchical model is much faster

than directly modeling the whole stream with a RNN, and

it will not easily suffer from gradient vanishing problem. In

this paper, we explore two variants of model architectures

that towards using contextual information.

2. RESIDUAL-PYRAMIDAL LOCAL MODEL

We use in-house collections of media sounds for exper-

iments. The length of audio streams range from a few

seconds up to 30 minutes. Each stream is chunked into

non-overlapping 5-second audio segments, each labeled

as media presence or not. There are in total 2059 streams

which consists of 191604 labeled, and 29421 unlabeled

5−second segments. For each stream, we can retrieve the

order of the segments. There are 311 and 310 streams for

validation and test set respectively, which corresponds to

16765 and 16939 5−second segments, respectively. We ex-

tract log mel-filter bank energy (LFBE) features from audio,

with a window of 25ms shifted at every 10ms. As a result, a

498× 20 (as in Fig 1a) feature matrix is extracted for each

5-second segment.

Our local model consists of a shallow Residual Network

(ResNet) [20] and a stacked bidirectional pyramidal RNN

with LSTM cells [18, 19]. The shallow ResNet (shown in Fig-

ure 1a) only consists of two residual blocks, preceded by one

5×5 convolutional and 3×3 pooling layer, followed by an

average pooling layer. The ResNet transforms the 498×20D

input into a 125×256D intermediate representation, reduce

the length of temporal domain to roughly 1
4 of the original.

The representation is fed to stacked pyramid bidrectional

RNNs, which is further followed by an average pooling layer

and a softmax layer. The RNN cell size we used is 256 per

direction. The output of the softmax layer is a real number

between 0 and 1. The larger the value, the higher chance

that the input 5−second audio segment (partially) contains

media source sound. A pyramidal layer subsamples its in-

put layer by a fixed scaling factor, which is equivalent to en-

force segmental structure to hidden states of a layer without

subsampling. Thus, stacking a few pyramid layers (with rea-

sonable subsampling rate) would enforce the local model to

ignore those very short term variations. This matches our

motivation that features for media presence detection task

should be “signal level" rather than “local/phonetic level".

Note that, there are a few variations (e.g. skipping or con-

catenation) of pyramidal layer as shonw in [18], we adopt

the skipping one. We use 3 pyramidal layers in our local

model (downsample rate 1
3

).

We also applied a few regularization techniques includ-

ing recently proposed recurrent dropout [21, 22], that is

dropout applied to recurrent connections in RNNs. There

is long argument that recurrent dropout would hurt per-

formance of RNN based models [23] presumably because

it hurts the precious historical memory of RNN. However,

our experiments show that, recurrent dropout is capable

to improve the performance of media presence detec-

tion task. We hypothesize this is because it makes the

model more robust to very short term variations. For non-

recurrent dropout, we selected from {0.2,0.3,0.4,0.5}, while

{0.0,0.05,0.15,0.2} recurrent dropout.

3. CONTEXT BASED PREDICTION

Each recorded stream might have very different recording

environment and specific channel effect. One quick so-

lution to address such per-stream difference is to remove

the per-stream mean and variance for per-frame 20 dimen-

sional LBFE feature vectors. As shown in the experimental

study part (section 5), stream-based normalization is very

helpful for local model presented in section 2. Actually,

stream-based normalization is a direct way to utilize the

contextual information.

We thus move to contextual model, which aims at sum-

marizing very broad contextual information using recur-

rent neural networks. Basically, our contextual model works

as an ensemble of local models described in section 2. A

unidirectional LSTM is used to chronologicaly process the

representation from the local model’s topmost (or interme-

diate) bidirectional pyramidal RNN layer, for each 5 second

chunk. Such kind of model gathers together the long-range

historical memory and local representation towards me-

dia presence prediction. There are several motivations on

choosing such a hierarchical model rather than a flat RNN

on modeling a very long stream. Firstly, the original stream

can be too long, and a RNN directly running on (up to)

30min stream can be very time consuming. Secondly, a re-

current model can suffer from gradient vanishing problem

(even using LSTM cell) if the input sequence is too long [24].

Finally, hierarchical model is a natural fit to our stream data

consists of pre-chucked weakly labeled short segments.
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(a) Shallow residual network. A local model con-

sists of shallow residual network plus pyramidal

RNN (blue part in figure 1b and 1c)

(b) Contextual model I, a hierarchical model with representation from local model as in-

put to contextual RNN. The blue part indicates the pyramidal part of local model, the “+"

sign indicates average pooling layer and the red part indicates the contextual RNN.

(c) Contextual model II, a hierarchical model that learns representation of each local au-

dio snippet conditioned on contextual representation. The intermediate layer of local

models (blue) are averaged to be input to the contextual model (red part), and the output

of contextual model is further fed back to be input of higher layer of local model.

(d) FPR-FNP curves for local model with stream-

based normalization, contextual model II and

contextual model II with imputation on test set.

Fig. 1: Local Model, Contextual Models and FPR-FNR curve

Each snippet is modeled by our residual-pyramidal archi-

tecture, while media on/off switch is modeled by contextual

RNN. We use 2 pyramidal layers for local model module (in

section 2 we use 3 ) within contextual models.

3.1. Model One

We present our first contextual model, which uses local

model (without the softmax layer) as feature extractor to

get a 256D per segment representation. These represen-

tations generated by average pooling layer (blue circle

with “+" sign as shown in Figure 1b) are the input to a

uni-directional RNN (LSTM cell). The hidden state of the

RNN (red circle shown in Figure 1b) then has memory of

history when making prediction via a softmax layer.

3.2. Model Two

In contextual model I (Figure 1b), the historical memory is

included in the final representation used for prediction (e.g.

red color circle in the figure). However, historical memory

contains high-level and much richer information than pre-

dicting media presence or not for current segment. In this

new model, we use two vectors to store historical memory

(contextual information) and information more closely re-

lated to prediction respectively, as shown in Figure 1c. In

contextual model I, the output from average pooling layer

of figure 1a is the input to the contextual recurrent layer.

However, in this model II, we feed representation of inter-

mediate pyramidal layers from local module as the input

to the contextual recurrent layer, which is a big difference

compared to contextual model I. The output of the contex-

tual recurrent layer, is further fed back to last pyramidal

layer of local module followed by average pooling layer as

shown in Figure 1c.

As we mentioned in section 2, labels are partially miss-

ing in training data. To overcome this problem, we add

masks to the final per segment output of both contextual

I and II, such that we only calculate loss for 5−second

segments that have been annotated. In this way, those

segments without annotation only contribute to learning

historical memory. Actually, we can predict the labels of

those training samples that are not annotated, and then

use these “pseudo labels" to better calculate the loss in

further training steps. Pseudo labels can be iteratively up-

dated as training goes on. Our observation shows that such

kind of imputation can boost the performance as shown in

experimental section (section 5)
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Table 1: Overall results using Equal Error Rate (EER), Accuracy (Acc), AUC, Recall at EER and Precision at EER. D=Dev,

T=Test, ↑ (↓) means larger (smaller) is better. Contextual-II-Imp means Contextual-II with missing label imputation.

Methods D EER(↓) D Acc(↑) T EER(↓) T Acc(↑) T AUC(↑) T F1(↑) T Recall(↑) T Precision(↑)

Local 12.7 93.8 14.0 93.7 94.1 68.7 64.0 74.1

Local-Norm 11.0 94.0 11.3 94.2 95.5 68.8 58.5 82.7

Contextual-I 10.8 95.7 10.9 94.8 93.4 74.8 72.4 77.3

Contextual-II 10.0 96.1 10.7 94.3 95.8 77.1 74.9 79.1

Contextual-II-Imp 10.2 95.8 10.1 95.2 96.1 76.7 75.3 78.1

4. RELATED WORK

Media presence detection also has close connection to a

few research topics, including Audio content representa-

tion and classification, Source separation and Spoofing

detection.

For audio content representation and classification, ex-

isting works [25] typically focus on representing the audio

towards storage and retrieval, thus typically do not con-

sider the difficulty caused by mixture of sources. However,

our daily life recorded stream typically consists of multiple

sources of sound. Also, deep learning techniques are not

(widely) used for the works listed in this field.

Source (signal) separation [26, 27] focuses on recover-

ing the original signal from a mixture of sound, and spoof-

ing detection [28] typically focuses on distinguish adver-

sarial examples of specific users. Compare to the two fields,

media presence detection is interested in distinguishing

general in-person speaking and media sound.

5. EXPERIMENTS

We show the experimental results in this section. We com-

pare different models using 5 different measurements. We

first consider Equal Error Rate (EER). This is the error

rate when a selected threshold leads to equal false positive

rate (FPR) and false negative rate (FNR). This is the major

metric we would refer to on evaluating our methods. We

would also check Accuracy (Acc) (when threshold equals

0.5), Area under curve (AUC) of Precision-Recall curve, F1

score at EER, Recall at EER and Precision at EER.

We test our local model (without using stream based

normalization) on the same training/dev/test set used in

the paper [1] (but with single channel input), and we got

13.0%, 77.0%, 87.0% and 69.0% in terms of EER, F1, Re-

call and Precision. The results is better/comparable to the

multi-channel model in paper [1]. The benefit presum-

ably comes from the facts that our local model is seek-

ing segmental-level invariant representation, and also the

slightly deeper network. Thus, we think this local model

itself can serve as a strong baseline.

Then, we test local model, local model with stream

based normalization (local-norm), contextual model I

(context-I), contextual model II (context-II) and contextual

model II with imputation technique (contextual-II-Imp) us-

ing our in-house collection data. The overall results shown

in Table 1 match our expectation that using contextual

information is helpful. Basically, per stream normalization

can also be interpreted as a way to utilize the contextual

information, which significantly improves the performance

over local model (local-norm vs local). Contextual model

I learns a slightly better way to use contextual information

comparing to per stream normalization according to row 3

and row 2 of Table 1. Contextual model II improves over

contextual model I by storing historical information and

local information separately.

Imputation based learning improves the performance

in some metrics, but not all. However, as the number of

missing labels are not huge, the observation is actually not

conclusive here. We expect more stable improvement of im-

putation based learning, if we have more missing labels or

if the label quality is not good.

Finally, we plot the FNR-FPR curve of three models

local-norm, contextual-II and contextual-II with imputa-

tion on test set, as shown in Figure 1d. As show in the

figure, contextual model II with/without imputation is con-

sistently better than local model. Contextual model II with

imputation is significantly better than contextual-II with-

out imputation when FNR is relatively small (e.g. 0.05−0.1).

6. CONCLUSION

We propose a residual-pyramidal hierarchical model archi-

tecture to capture contextual consistent, segment-level rep-

resentation that is invariant to local (e.g. 5 second level)

variances for media presence detection. Our experimental

results show the benefits of our proposed model in the me-

dia presence detection task. We also study the effect of re-

current dropout and stream-based normalization to media

presence detection. Our proposed techniques can be gen-

eralized to broader fields, such as acoustic event detection

and spoofing detection. We have two follow-up directions

based on this work. One is to explore structured learning

for this task, e.g. we can apply conditional random field

(CRF) on top of our existing contextual model. The other

is to utilize latent variable models, e.g. treating the missing

labels and label quality as latent variables, and use Expecta-

tion Maximization (EM) or Variational Auto-encoder (VAE)

based methods to solve the problem.
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