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ABSTRACT

Conformal prediction uses the degree of strangeness (noncon-

formity) of new data instances to determine the confidence

values of new predictions. We propose an inductive con-

formal predictor for sparse coding classifiers, referred to

as ICP-SCC. Our contribution is twofold: first, we present

two nonconformity measures that produce reliable confidence

values; second, we propose a batch mode active learning algo-

rithm within the conformal prediction framework to improve

classification performance by selecting training instances

based on two criteria, informativeness and diversity. Exper-

iments conducted on face and object recognition databases

demonstrate that ICP-SCC improves the classification accu-

racy of state-of-the-art dictionary learning algorithms while

producing reliable confidence values.

Index Terms— Conformal prediction, sparse coding, dic-

tionary learning, image classification, active learning.

1. INTRODUCTION

Conformal prediction (CP) was proposed by Vovk, Shafer and

Gammerman [1] based on the principles of algorithmic ran-

domness and transductive inference. CP uses the degree of

strangeness (nonconformity) of new data instances to deter-

mine the confidence values of new predictions.

The CP framework yields a set of predicted class labels

with guaranteed error rate, a property referred to as validity.

Moreover, unlike Bayesian methods [2], CP is only based on

the assumption that the data are independent and identically

distributed, i.e., no knowledge on the prior is required.

Transductive conformal prediction for active learning has

been reported in the literature [3, 4]. Active learning selects

a set of instances from an unlabeled pool based on several

criteria to improve classification performance. Ho et al. [3]

proposed the query by transduction, which sequentially se-

lects the most informative instances from an unlabeled pool.

The disadvantage of transductive inference is computational

inefficiency, which restricts its applicability.

Inductive conformal prediction emerged as an alternative

to transductive inference [1, 5, 6, 7]. The application of in-
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ductive conformal predictors (ICP) to decision trees is stud-

ied in [6]. Balasubramanian et al. [7] use informativeness to

perform active learning within the CP framework, improving

the performance of support vector machines. Although the

efforts mentioned above are shown to enhance performance,

they only use informativeness as the selection criterion for

active learning, which is only optimal for the selection of one

instance at each iteration.

Sparse coding has recently gained interest in a variety of

problems in image processing and computer vision, includ-

ing face recognition, image classification, and image denois-

ing [8, 9, 10, 11]. The goal of sparse coding is to approxi-

mate an input signal by a sparse linear combination of atoms

(columns) of an overcomplete dictionary. Jiang et al. [12]

incorporate the class label information and a label consis-

tency term in the objective function to simultaneously learn

a discriminative dictionary and a linear classifier. They refer

to this method as label consistent K-SVD (LC-KSVD). Gu

et al. [8] propose projective dictionary pair learning, which

learns a synthesis dictionary, and an analysis dictionary.

Despite these advances, sparse coding algorithms require

modifications [13, 14], or additional techniques to be imple-

mented in conjunction with them [15, 16], to perform active

learning, since confidence values and a measure of informa-

tiveness are required for those purposes. In addition, predic-

tions accompanied by confidence values are desirable, since

they provide information on the reliability of such predictions.

In light of the above, we propose an inductive confor-

mal predictor for sparse coding classifiers, referred to as

ICP-SCC. Our contribution is twofold: first, we present two

nonconformity measures that produce reliable confidence val-

ues; second, we propose a batch mode active learning algo-

rithm within the conformal prediction framework to improve

classification performance by selecting training instances

based on two criteria, informativeness and diversity.

This paper is organized as follows. First, an introduc-

tion to conformal prediction and dictionary learning (DL) is

provided in Section 2. The ICP-SCC algorithm is described

in Section 3. Furthermore, two nonconformity measures for

sparse coding classifiers and the ICP-SCC query function for

active learning are introduced. Experiments conducted on

face and object recognition databases are presented in Sec-

tion 4.

3307978-1-5386-4658-8/18/$31.00 ©2019 IEEE ICASSP 2019



2. BACKGROUND

2.1. Conformal prediction

CP uses the nonconformity of new data instances to determine

the confidence values of new predictions. For an arbitrary

significance level ǫ ∈ [0, 1], CP yields a set Ψǫ containing the

correct class label of a given data instance with probability

(1 − ǫ), a property referred to as validity [17]. Define a bag

of size n ∈ R as a collection of n elements, some of which

may be identical with each other. Let that bag be denoted as

Jz1, . . . , znK. Define zi = (xi, hi), where xi represents a data

instance and hi its corresponding class label.

A nonconformity measure A(Jz1, . . . , znK, z) is a func-

tion producing a nonconformity score α ∈ R, representing

how different z is from the elements in the bag Jz1, . . . , znK.

The nonconformity score of an element zi in Jz1, . . . , znK is

obtained as αi = A(Jz1, . . . , zi−1, zi+1, . . . , znK, zi).
In addition, we can measure the conformity of xn+j to

class q using p-values, which are defined as [1]:

p(α
(Hq)
n+j ) =

count{i : αi > α
(Hq)
n+j }

n+ 1
, (1)

where α
(Hq)
n+j is the nonconformity score of xn+j , under the

null hypothesis Hq , and p(α
(Hq)
n+j ) is its p-value. Notice

that the p-value is highest when all previous nonconformity

scores, α1, . . . αn, are higher than that of the new instance,

α
(Hq)
n+j , meaning that xn+j best conforms to class q. CP

uses Equation (1) to predict the label for xn+j using the

highest p-value. In addition, for each new instance xn+j

and significance level ǫ ∈ [0, 1], we form a set of labels

Ψǫ
n+j = {i : p(α

(Hi)
n+1 ) > ǫ} containing the correct class label

for xn+j with probability (1 − ǫ), according to the validity

property.

The p-values are also used to quantify the informative-

ness [3, 4] . Ho and Wechsler [3] define the quality of infor-

mation of instance xn+j as

I(xn+j) = p
(1)
n+j − p

(2)
n+j , (2)

where p
(1)
n+j and p

(2)
n+j are the largest and second largest p-

values for instance xn+j , respectively.

2.2. Dictionary Learning

Two types of DL approaches are considered in this work: syn-

thesis dictionary learning (SDL), and dictionary pair learning

(DPL). The two aforementioned techniques are briefly intro-

duced in this section. For the following definitions, let Y ∈
R

N×n be a matrix composed of n training vectors y ∈ R
N×1,

X ∈ R
K×n be a matrix composed of vectors x ∈ R

K×1,

which are the sparse representations of the training vectors in

matrix Y, and M be the number of classes. Let D ∈ R
N×K

be the dictionary, constituted by K atoms d ∈ R
N×1 that are

the columns of D.

2.2.1. Synthesis Dictionary Learning

A reconstructive dictionary D ∈ R
N×K is learned by solv-

ing < X,D >= argminX,D ‖Y − DX‖
2
F . This optimization

problem is solved by alternating between the updates of D and

X [18]. LC-KSVD [12] and LC-RLSDLA [10] use an aug-

mented version of matrix Y, including the class label informa-

tion, to simultaneously obtain a linear classifier W ∈ R
M×K .

Define u = [u1, . . . , uM ]T = Wx. The predicted label for x

is obtained as ĥ = argmaxj uj , for j = 1, . . . ,M .

2.2.2. Dictionary Pair Learning

DPL [8, 11] learns M synthesis dictionaries Dj ∈ R
N×K ,

and M analysis dictionaries Pj ∈ R
K×N (j = 1, . . . ,M ).

DPL solves< P,D >= argminP,D

∑M

j=1

∥

∥Yj − DjPjYj

∥

∥

2

F
+

∥

∥PjȲj

∥

∥

2

2
, where Yj is a matrix containing the training vec-

tors of class j, and Ȳj is a the complementary data matrix of

Yj . Define vj =
∥

∥x − DjPjx
∥

∥

2
. The predicted label for x is

obtained as ĥ = argminj vj , for j = 1, . . . ,M .

3. INDUCTIVE CONFORMAL PREDICTOR FOR

SPARSE CODING CLASSIFIERS

We propose an inductive conformal predictor for sparse cod-

ing classifiers, referred to as ICP-SCC. Furthermore, we

present an active learning algorithm within the CP frame-

work, in which instances are selected from an unlabeled pool

based on two criteria, informativeness and diversity. In the

remainder of this section the proposed nonconformity mea-

sures and query function are introduced, and the ICP-SCC

algorithm is described.

3.1. ICP-SCC Nonconformity Measures

We propose two nonconformity measures, the first one is de-

signed for SDL, and the second one for DPL. A description

of the nonconformity measures is provided below.

3.1.1. Nonconformity measure for SDL

Let W ∈ R
M×K be a linear classifier, for M distinct

class labels, constituted by row vectors wq ∈ R
K , q ∈

{1, 2, . . . ,M}. Define ŵq = wq/
∥

∥wq

∥

∥. The proposed non-

conformity measure for SDL under the null hypothesis Hq is

given by

A
(Hq)

SDL := −ŵqx +
1

M − 1

∑

i6=q

ŵix, (3)

3.1.2. Nonconformity measure for DPL

Let Dj ∈ R
N×K , and Pj ∈ R

K×N be the synthesis and

analysis dictionaries for class j (j = 1, . . . ,M ), respectively.
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Algorithm 1 ICP-SCC

1: Input: Proper training set Tprop = {z1, ..., zℓ}, cal-

ibration set Tcal = {zℓ+1, ..., zℓ+r}, unlabeled pool

U = {xn+1, . . . , xn+v}, classification rule Cprop, number of

desired instances NAL, and number of class labels M

2: Use Equation (3) or (4) and the classification rule Cprop to

calculate:

• The nonconformity scores {αℓ+1, . . . , αℓ+r} corre-

sponding to the instances in the calibration set.

• The nonconformity scores {αHi
n+1, . . . , α

Hi
n+v} corre-

sponding to the instances in the unlabeled pool, where

i = {1, . . . ,M}

3: Use Equation (1) to calculate the p-values associated with

the instances in U , and obtain their informativeness I(xn+j)
through equation (2), where j ∈ {1, . . . , v}

4: Apply equation (5) to select the NAL most informative and

diverse instances. Then group such instances and their cor-

responding class labels as Td = {zd1 , . . . , z
d
NAL

}

5: Construct TAL = Tprop ∪ Td

6: Output: TAL

The proposed nonconformity measure for DPL under the null

hypothesis Hq is given by

A
(Hq)

DPL :=‖x − DqPqx‖2 −
1

M − 1

∑

i6=q

‖x − DiPix‖2 , (4)

Assuming that the classifiers are accurate and the null

hypothesis Hq is true, the values of A
(Hq)
SDL and A

(Hq)
DPL will

decrease, since the term ŵqx in (3) increases, and the term
∥

∥x − DqPqx
∥

∥

2
in (4) decreases, indicating that x conforms to

class q. Conversely, if the null hypothesis Hq is false, the

value of A
(Hq)
SDL, and A

(Hq)
LM will tend increase, indicating that

x does not conform to that particular class.

3.2. ICP-SCC Query Function

Different from previous work on ICP [5, 7], the proposed ap-

proach considers both informativeness and diversity as the se-

lection criteria for active learning. The proposed query func-

tion is given by

xt = argmin
xi∈U/Td

{

ρ|I(xi)|+ (1− ρ) max
xj∈Td

[

|xi · xj |

‖xi‖‖xj‖

]

}

, (5)

where U , Td and, U/Td are the unlabeled pool U , the set of

instances selected for training, and the set of instances in U
that are not contained in Td, respectively. Diversity is mea-

sured by the second term using cosine angle distance [19].

The parameter ρ provides the trade-off between informative-

ness and diversity. The first instance of Td is selected as the

most informative instance in U . The algorithm stops when

the number of selected instances in Td is equal to the desired

number NAL.

3.3. ICP-SCC for Active Learning

ICP-SCC selects the most informative and diverse instances

from an unlabeled pool using the proposed query function de-

scribed in (5). Informativeness is computed through equation

(2). The selected instances, along with their corresponding

class labels, are used in a subsequent training stage to im-

prove performance, instead of relying on instances that are

selected at random.

Define Ttrain = {z1, ..., zn} as the training set and

U = {xn+1, . . . , xn+v} as the unlabeled pool. Following

the steps described for ICP in [1, 7], we split Ttrain into

Tprop = {z1, ..., zℓ}, the proper training set, and Tcal =
{zℓ+1, ..., zℓ+r}, the calibration set, where the size of the

training set satisfies n = ℓ + r. Cprop is the classifier trained

on the proper training set Tprop, which is used to compute

informativeness. Let NAL and M be the number of desired

instances from U and the number of class labels, respectively.

Let TAL = Tprop ∪ Td, where Td = {zd1 , . . . , z
d
NAL

} is

the set of pairs containing the NAL most informative and

diverse instances in U and their corresponding class labels.

The proposed active learning approach is summarized in

Algorithm 1.

4. EXPERIMENTAL RESULTS

The focus of ICP-SCC is twofold: 1) to improve the per-

formance of sparse coding classifiers through active learn-

ing; and 2) to produce reliable confidence values. Therefore,

ICP-SCC is to evaluated based on the improvement achieved

in classification performance and the quality of the produced

confidence values.

4.1. Experimental Setup

The performance of ICP-SCC is evaluated using two differ-

ent sparse coding algorithms: LC-KSVD [12], and DPL [8].

The baseline for our experiments is random sampling. The

databases used in our experiments are described below.

The Extended YaleB database [20] consists of 2,414

frontal-face images of 38 people (38 different classes), taken

under varying lighting conditions. There are about 64 images

for each person. The feature descriptors used are random-

faces [21] of size N = 504.

The AR database [22] contains over 4,000 frontal-face

images of 100 people (100 different classes), each of size

165×120. Images include facial variations and also disguises,

such as sunglasses and scarves. The feature descriptors used

are randomfaces of size N = 540.

The Caltech101 database [23] contains 9,144 images

from 101 object classes, and a background class, including

animals, vehicles, etc. The number of images in each cate-

gory varies from 31 to 800. For Caltech101, SIFT descriptors

are first extracted. Next, spatial pyramid features are obtained
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Fig. 1. Classification accuracy for DPL and LC-KSVD as a

function of NAL, (a) YaleB (K = 380), (b) AR (K = 400),

(c) Caltech101 (K = 510), (d) effect of ρ on the performance

of LC-KSVD (AR)

from the SIFT descriptors. Then, the dimensionality of the

resulting features is reduced to 3000 through PCA [12].

For each of the experiments, 5 trials are conducted. In

each trial, the order of the training instances is permuted. The

average classification accuracy is presented. The number of

images per class in the proper training set for the Extended

YaleB, AR, and Caltech101 databases is 8, 5, and 5, respec-

tively. The calibration set consists of 199 instances, which re-

sults in a resolution of 0.5% in the confidence values, accord-

ing to (1). Optimization is performed over the parameter ρ
through exhaustive search, and the best results are presented.

4.2. Results: ICP-SCC for Active Learning

The performance improvement obtained through ICP-SCC

is compared with that of: random sampling, active learning

based on informativeness [3, 5, 24], and MCLU-ECDB [25],

which are denoted as (rnd), AL(info), and AL(ECDB) respec-

tively. The performance of LC-KSVD and DPL as a function

of the number of selected instances NAL, for the different

databases and query functions, is shown in Fig. 1. It is ob-

served that the performance of both algorithms is improved

when ICP-SCC is used, for all the considered databases.

Table 1 shows that for the AR database (LC-KSVD,

NAL = 300) the performance of (rnd), AL(info), and

AL(ECDB) is 74.0%, 77.9%, and 78.1%, respectively, whereas

that of ICP-SCC is 79.9%. Similar results are observed for

the Extended YaleB and Caltech101 databases, with ICP-SCC

achieving the best performance among the considered active

learning approaches.

Table 1. Classification accuracy for different query functions

as a function of the number of selected instances NAL

Algorithm Query func.

YaleB AR Cal101

NAL NAL NAL

200 300 200 300 200 300

LC-KSVD

(rnd)

AL(info)

AL(ECBD)

ICP-SCC

86.9

90.1

90.7

91.9

87.6

91.4

91.8

92.5

73.5

76.5

76.8

77.6

74.0

77.9

78.1

79.9

51.3

51.1

51.4

51.7

51.4

51.3

51.6

51.8

DPL

(rnd)

AL(info)

AL(ECBD)

ICP-SCC

92.3

95.8

96.2

96.9

93.7

97.3

97.4

97.9

88.3

91.0

91.3

92.4

89.9

92.4

92.9

93.9

50.8

51.1

51.5

52.5

51.4

51.5

52.1

52.6

Table 2. Experimental results of the validity property

Algorithm Confidence (%)
Error (%)

YaleB AR Cal101

LC-KSVD

95

90

85

4.8

10.0

15.5

4.7

12.2

15.9

3.9

9.9

14.3

DPL

95

90

85

5.1

10.4

15.8

5.7

11.7

16.2

4.2

9.2

15.6

The effect of the parameter ρ on the performance of

LC-KSVD (AR database) is shown in Fig. 1(d). Notice that

ρ has to be optimized for the each value of NAL. Similar

results are obtained for the YaleB and Caltech101 databases.

4.3. Results: ICP-SCC Confidence Values

The quality of the ICP-SCC confidence values is demon-

strated through the evaluation of validity property [5]. We

define the percentage of errors as the number of times the

correct label for instances xn+j is not in Ψǫ
n+j , for a given

ǫ, divided by the total number of test instances. The exper-

imental results in Table 2 show that for a given confidence

level, (1 − ǫ), the percentage of errors closely approximates

the significance level, ǫ, which agrees with the validity prop-

erty. This demonstrates the quality of the p-values calculated

through the proposed nonconformity measures and thus the

usefulness of its confidence measures.

5. CONCLUSIONS

An inductive conformal predictor for sparse coding classi-

fiers, referred to as ICP-SCC is proposed. Two nonconfor-

mity measures, one for synthesis dictionary learning, and the

other one for dictionary pair learning are proposed. Further-

more, an active learning algorithm within the conformal pre-

diction framework is presented to improve classification per-

formance. Experiments conducted on face and object recog-

nition databases demonstrate that ICP-SCC improves the clas-

sification accuracy of state-of-the-art dictionary learning al-

gorithms, while producing reliable confidence values.
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[24] U. Johansson T. Löfström and H. Boström, “Effective

utilization of data in inductive conformal prediction us-

ing ensembles of neural networks,” Proc. The Interna-

tional Joint Conference on Neural Networks (IJCNN),

vol. 2, pp. 1–8, Aug. 2013.

[25] B. Demir, C. Persello, and L. Bruzzone, “Batch-mode

active-learning methods for the interactive classification

of remote sensing images,” IEEE Trans. Geosci. Remote

Sens, vol. 49, no. 3, pp. 1014–1031, Oct. 2010.

3311


		2019-03-18T11:18:56-0500
	Preflight Ticket Signature




