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ABSTRACT

Cross-resolution face recognition (CRFR) aims to learn
the matching of a low-resolution (LR) probe image with a
database of high-resolution (HR) gallery images. Existing
methods including super resolution and projection-based al-
gorithms are not recognition-oriented and computationally
expensive, or ignore the inter-class associations across reso-
lutions. To address the issues, we propose a novel end-to-end
Transferable Coupled Network (TCN) for CRFR. Specifi-
cally, the TCN consists of two networks for the HR and LR
domains, respectively. To reduce the resolution mismatch, a
transferrable triple loss (TTL) is introduced to pull together
cross-resolution positive pairs (intra-class) and also enforce
margins towards negative ones (inter-class) from both do-
mains. Besides, to keep stability and faster convergence, a
novel online triplet selection method is proposed. Empiri-
cally, the proposed TCN model consistently outperforms the
state-of-the-art methods among various low resolutions and
architectures on public LFW and SCFace benchmarks.

Index Terms— Low resolution, face recognition, domain
adaptation, transferable triple loss

1. INTRODUCTION

Face recognition (FR) area has witnessed abundant achieve-
ments under various challenging scenarios over the past
decades [1, 2, 3, 4, 5]. However, existing methods often
assume that the region of the face images is large enough and
contains sufficient detail information, which ignore resolution
variations in practical. For example, due to the prohibitive
costs of installing high-definition cameras all around, surveil-
lance and monitoring systems usually rely on cameras of very
limited definitions. As such, the face region can be extremely
small, thereby resulting in errors when matching against high
resolution images, e.g., profile images on social media or
mugshot images captured by law enforcement. Therefore,
cross-resolution (also mentioned as ”low resolution” in some

†Corresponding author: Hongyang Chao
?This work is partially supported by NSF of China under Grant

61672548, U1611461, 61173081, and the Guangzhou Science and Technol-
ogy Program, China, under Grant 201510010165.

works) face recognition (CRFR), which aims to improve
the learning of matching a low-resolution (LR) probe image
with a database of high-resolution (HR) gallery images, has
become a promising direction.

Empirical studies [6, 7, 8] have demonstrated the dra-
matically degraded performances of the state-of-the-art face
recognition models when there exists large resolution gap. In
the literature, existing methods can be generally divided into
two categories. One intuitive method is to reconstruct the HR
probe image given the LR input by super resolution (SR) al-
gorithms [8, 9, 10, 11, 12]. Although the missing information
can be recovered to obtain satisfactory HR images, SR-based
methods could be computationally costly due to their non-
end-to-end way. Besides, these methods still cannot achieve
satisfactory results since they are not optimized for recogni-
tion purposes. Another line of work tries to project the HR-
LR image pairs into a common feature space [13, 14, 15,
16, 17, 18], where the distance between them is optimized
to be minimized. Mundunuri et al. [16] propose a multi-
dimensional scaling to learn a shared transformation matrix
for solving the resolution variations. Lu et al. [17] propose
deep coupled ResNet (DCR), where the trunck network is
trained by face images of significantly different resolutions
and two branch networks, trained by HR and targeted LR im-
ages, work as resolution-specific coupled mappings. Unfor-
tunately, these methods only consider learning the intra-class
mappings between the HR-LR pairs while not investigating
the inter-class associations across resolutions.

To address the issue, we propose an end-to-end Transfer-
able Coupled Network (TCN) for CRFR problem. Typically,
we regard this task as a novel domain adaptation problem,
where each resolution refers to a domain. The goal lies in
leveraging distilled knowledge learned from the HR (source)
domain to improve the matching with a LR (target) domain
that lacks sufficient image details for recognition guarantees.
Inspired by the triple loss, which has been successfully ap-
plied in many CV applications [1, 19], we propose a novel
transferable triple loss (TTL) to effectively reduce the reso-
lution gap. The TTL depends on pulling together positive
pairs (intra-class) as the pivots between domains to push away
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Fig. 1. The architecture of the proposed Transferable Coupled Network (TCN) model. (Best viewed in color.)

negative pairs (inter-class) from two different types of cross-
resolution triplets simultaneously. Specifically, the TCN con-
sists of two networks for both domains, where the HR-net
that is pre-trained on HR images and fixed acts as a teacher
to guide the learning of the LR-net. The LR-net is jointly
trained by the proposed TTL, softmax loss and center loss [2]
such that the feature representations can be both discrimina-
tive and resolution-invariant. For stability and faster conver-
gence, we also introduce a novel cross-resolution triplet se-
lection method to online select hard triplets within a mini-
batch. We evaluate the proposed TCN model among vari-
ous low resolution settings including 8x8, 12x12, 16x16 and
20x20, and two architectures VGGFace [20] and ResNet [2]
on LFW and SCFace datasets. Our model outperforms SR-
based methods, VDSR [10] and DRRN [9] by 8.32% and
8.12% on average on LFW dataset, respectively. Compared
with projection-based methods, the proposed TCN model out-
performs the best baseline DCR [17] by 1.48% and 1.88% on
average on LFW and SCFace datasets, respectively.

2. METHODOLOGY

2.1. Problem Definition and Notations

Given a set of labeled HR training data Xh={xi
h, y

i
h}

N

i=1
from a HR domain Dh, where yi

h is the class label of the i-th
HR face image xi

h, we down-sample each HR image xi
h to the

targeted LR size and then up-sample it to the same size as the
HR one by bicubic interpolation. As such, we can construct a
set of labeled LR training data Xl={xj

l , y
j
l }

N

j=1
as a targeted

LR domain Dl. For testing, we regard the original testing set
as gallery images and obtain the targeted LR testing set in the
same way as probe images. The goal of the CRFR is to match
a LR probe image to the database of HR gallery images.

2.2. Overview
We propose Transferable Coupled Network (TCN), an end-
to-end architecture as shown in Figure 1, to capture deep face
representations that are both discriminative and resolution-
invariant for cross-resolution face recognition. TCN has three

key components: 1) two parallel deep convolutional neu-
ral networks (CNN), e.g., VGGFace [20] or ResNet [2], for
learning deep resolution-specific representations of the HR
and LR domains, respectively. The two parallel CNNs have
same structure but different configurations. The HR-net is
pre-trained on HR face images and fixed during the train-
ing process, which serves as a teacher to provide distilled
knowledge for the LR-net, while only the LR-net needs to be
learned with the aim of reducing the resolution gap across do-
mains; 2) a novel transferable triple loss for pulling together
similar cross-resolution pairs and pushing away dissimilar
cross-resolution pairs among two different types of triplets;
3) a novel cross-resolution triplet selection module.

2.3. Preliminaries: Triple Loss
The triple loss proposed in FaceNet [1] for face recognition,
tries to enforce a margin between each pair of faces from one
person to all other faces. The loss aims to ensure that an im-
age xa

i (anchor) of a specific person is closer to all other im-
ages xp

i (positive) of the same person than it is to any im-
age xn

i (negative) of any other person. Thus, for each triplet
(xa

i ,x
p
i ,x

n
i ), i=1, 2, ..., N , we want,

‖f(xa
i )− f(x

p
i )‖

2
2 + α < ‖f(xa

i )− f(xn
i )‖22,

where α is a margin that is enforced between positive and
negative pairs. Then the triple loss is defined as:

Lt =

N∑
i=1

[‖f(xa
i )− f(x

p
i )‖

2
2 − ‖f(xa

i )− f(xn
i )‖22 + α]+

2.4. Transferable Triple Loss
Most of previous methods for cross-resolution face recog-
nition focus on learning a transformation to minimize the
intra-class distance while ignoring the inter-class distance
across resolutions. Thus, we propose a novel transferable
triple loss (TTL), which considers both of them and allows
the faces for one identity with different resolutions stay on
a manifold, and meanwhile, enforce the distance of other
identities with different resolutions. Mathematically, we
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parameterize the HR-net and LR-net by fh(xh)∈Rd and
fl(xl)∈Rd, which embeds a HR image xh∈Dh and a LR
image xl∈Dl into a d-dimensional feature space, respec-
tively. Besides, the feature representations are constrained to
live on the d-dimensional hypersphere, i.e., ‖fh(xh)‖2 = 1,
‖fl(xl)‖2=1. The triplets are distributed across resolutions.
Among the cross-resolution triplets, two different categories
can be derived in term of the anchor’s resolution. One type is
named HLL-triplets Th={thi}Nh

i=1, where the anchor locates
in the HR domain. Each triplet thi=(xa

hi,x
p
li,x

n
li) behaves

as (HR-anchor, LR-positive, LR-negative). We ensure that a
HR image xa

hi of a specific person is closer to all other LR
images xp

li of the same person than it is to any LR image xn
li

of any other person. Thus, ∀(xa
hi,x

p
li,x

n
li) ∈ Th, we want,

‖fh(xa
hi)− fl(x

p
li)‖

2
2 + β < ‖fh(xa

hi)− fl(xn
li)‖22 (1)

Similarly, the other type is named LHH-triplets Tl={tlj}Nl
j=1,

where the anchor lies in the targeted LR domain. Each
triplet tlj=(xa

lj ,x
p
hj ,x

n
hj) is in the form of (LR-anchor, HR-

positive, HR-negative). We also wish a LR image xa
lj of a

specific person is closer to all other HR images xp
hj of the

same person than it is to any HR image xn
hj of any other

person. Thus, ∀(xa
lj ,x

p
hj ,x

n
hj) ∈ Tl, we want,

‖fl(xa
lj)− fh(x

p
hj)‖

2
2 + γ < ‖fl(xa

lj)− fh(xn
hj)‖22 (2)

As we can see, both types of triplets can be combined to-
gether into consideration. In this way, an anchor-positive
pair (same identity with different resolutions), which enforces
distances of both HR and LR negative ones (another iden-
tity) simultaneously, can act as a bridge to allow fully in-
teractions between the HR and LR domains. Given a set of
quads Q={qi}

Nq

i=1, where each quad qi=(xs
hi,x

s
li,x

t
hi,x

t
li)

consists of the images of two different identities with their
HR and LR forms. The quad can be decomposed into the
two types of triplets aforementioned, i.e., (xsa

hi ,x
sp
li ,x

tn
li ) and

(xsa
li ,x

sp
hi ,x

tn
hi). Thus, the proposed transferable triple loss is:

Lttl =

Nq∑
i=1

[‖fh(xsa
hi)−fl(x

sp
li )‖

2
2−‖fh(xsa

hi)−fl(xtn
li )‖22+β]+

+[‖fl(xsa
li )−fh(x

sp
hi)‖

2
2−‖fl(xsa

li )−fh(xtn
hi)‖22+γ]+.

2.5. Cross-resolution Triplet Selection

Choosing suitable cross-resolution triplets is crucial to achieve
fast convergence and superior performance. Thus, we propose
an online cross-resolution triplet selection method, which se-
lects all anchor-positive pairs (same identity with different
resolutions) while hard negatives from within a HR-LR mini-
batch pair. Hard negatives mean that the identities of HR-LR
resolutions both violate two triplet constraints in Eq 1 and 2,
respectively, such that

‖fh(xsa
hi)−fl(xtn

li )‖22−‖fh(xsa
hi)−fl(x

sp
li )‖

2
2<β,

‖fl(xsa
li )−fh(xtn

hi)‖22−‖fl(xsa
li )−fh(x

sp
hi)‖

2
2<γ.

Unlike the triple loss for FR that needs a large batch size to
ensure a minimal number of exemplars of any one identity
occurred in each mini-batch, the TTL can keep stability and
faster convergence with smaller mini-batches since there exist
sufficient anchor-positive pairs in all HR-LR mini-batch pairs.

2.6. Resolution-specific Discriminative Learning
In addition to adapting the model to be resolution-invariant,
we also adopt the joint supervision of softmax loss L∗

s and
center loss L∗

c [2] to ensure the resolution-specific discrim-
inability of the TCN. The joint loss L∗

d = L∗
s + λL∗

c in a
general form for both domains, with ∗∈{h, l} denoting the
HR or LR domain, is defined as:

L∗
d = −

N∑
i=1

log
eW

T
yi

vi+byi∑M
j=1 e

WT
j vi+bj

+ λ

N∑
i=1

∥∥vi − cvyi

∥∥2
2

where N is the number of training samples and M indicates
the number of the identities in the training data. vi refers to
the feature representation extracted by HR-net or LR-net from
i-th image xi. W and b are the weights of the softmax layer.
Wj denotes the jth column vector of the W. yi is the class
label for the ith sample and cvyi

denotes the yith class center
of deep features v. It is helpful to note that we only use Lh

d

for pre-training the HR-net.

2.7. Joint Training

Combining the losses we introduced before, we constitute the
overall loss for the TCN model as:

Ltotal = Ll
s + λLl

c + ρLttl.

where λ and ρ are two scaling factors used for balancing three
loss functions. In this way, we guarantee both the discrim-
inability and resolution invariance of the LR features to match
with HR gallery images during the joint training.

3. EXPERIMENT

3.1. Experimental Setup

Dataset The CASIA-WebFace [21] dataset is used as the
training set to train the proposed TCN model. It consists of
494,414 images of 10575 subjects, which contain at least 14
images per subject. The face images are cropped and aligned
to 112x96 pixels by affine transformation with facial land-
marks detected by MTCNN [22]. Extensive experiments are
conducted on popular LFW [23] and SCface [24] benchmarks
to evaluate the proposed TCN model.
Network Architecture We evaluate the proposed TCN on
two kinds of CNN networks, VGGFace [20], and ResNet [2].
It would be more convincing that the efficacy of TTL does not
depend on any particular architecture.
Implemenation Details The margins β and γ are both set to
be 0.1. The scaling factors λ and ρ are 0.008 and 0.1, respec-
tively. The batch size for both domains is 150. The embed-
ding size d of each image is 1024. We use Adam [25] for
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Table 1. Face recognition accuracy (%) of different methods
using different probe sizes on LFW dataset.

Probe size 8x8 12x12 16x16 20x20 112x96
NA-VGGFace [20] 75.0 82.6 89.3 93.4

97.7

VDSR-VGGFace [10] 73.6 83.5 88.6 94.0
DRRN-VGGFace [9] 74.2 84.2 88.5 93.8

FT-VGGFace 82.3 88.6 92.7 94.8
DCR-VGGFace [17] 83.7 88.9 93.1 95.2

TCN-VGGFace 85.8 91.2 95.4 96.5
NA-ResNet [2] 72.7 84.1 92.3 95.4

98.8

VDSR-ResNet [10] 70.4 85.5 91.9 96.0
DRRN-ResNet [9] 70.6 86.2 91.8 95.8

FT-ResNet 88.9 93.8 95.9 96.8
Trunk network [17] 88.2 91.6 95.5 96.8
DCR-ResNet [17] 89.3 93.2 96.6 97.3

TCN-ResNet 90.5 94.7 97.2 97.8

optimizer with the initial learning rate 0.01. The maximum
training epoch is 60. Each pixel of images is normalized to
[-1.0, 1.0]. The hyperparameters are tuned on 10% randomly
sampled held-out training data of the CASIA-WebFace.

3.2. Performance on LFW

The LFW dataset contains 13,233 images of 5749 subject,
which has been extensively studied for unconstrained FR in
recent years. Following the evaluation protocol in [23], we
compute the mean verification accuracy by the ten-fold cross-
validation scheme. Face images are cropped and aligned us-
ing same methods as on CASIA-WebFace images. For two
images in the cross-resolution face verification paradigm, we
take one as HR (112x96) gallery image and down-sample the
other one to 8x8, 12x12, 16x16, or 20x20, and then up-sample
it as the LR probe image (112x96). Same pipeline is used
on CASIA-WebFace during the training. Cosine distance is
used to calculate the similarity between two features. We
compare with No adaptation (NA), Fine-tuning (FT), Trunk
network [17] and DCR [17] on two different base models,
VGGFace [20] and ResNet [2]. NA uses a CNN trained on
HR images without any adaptation. FT advances the NA with
further fine-tuning the network on LR images. Trunk net-
work is trained with images of different resolutions. DCR
adopts coupled-mappings to minimize the distance between
the HR-LR pairs. We also compare with SR-based meth-
ods, VDSR [10] and DRRN [9], which are used to recover
the probe images for testing. The experimental results are
shown in Table 1. In the last column, the accuracies for HR
probe images of the same resolution as gallery images are
also presented. From the results, our approach shows signifi-
cant and consistent improvements over the baselines on both
two architectures. Our model outperforms SR-based meth-
ods, VDSR [10] and DRRN [9] by 8.32% and 8.12% on aver-
age respectively since they are not optimized for recognition
purposes. Besides, our method outperforms the best baseline
DCR by 1.48% on average, which demonstrates the effective-
ness of incorporating the inter-class information.

Table 2. Face rates (%) of different methods at difference
distances on SCFace dataset.

Distance d1 d2 d3
MDS [15, 26] 60.3 66.0 69.5
DMDS [16] 61.5 67.2 62.9

LDMDS [16] 62.7 70.7 65.5
RICNN [27] 23.0 66.0 74.0

VGGFace [20] 41.3 75.5 88.8
FT-VGGFace 46.3 78.5 91.5

DCR-VGGFace [17] 62.3 91.0 94.8
TCN-VGGFace 64.8 92.8 96.5

ResNet [2] 36.3 81.8 94.3
FT-ResNet 54.8 86.3 95.8

Trunk network [17] 52.0 89.5 96.3
DCR-ResNet [17] 73.3 93.5 98.0

TCN-ResNet 74.6 94.9 98.6

3.3. Performance on SCFace

The SCFace is a real-world dataset, which contains images
of 130 subjects captured by surveillance cameras under un-
constrained indoor environment. For each subject, there are
15 images captured by surveillance cameras at three distances
(five images at each distance), 4.20 m (d1), 2.60 m (d2), and
1.00 m (d3), and one mugshot image taken by a digital cam-
era. Following the setting in [16], frontal mugshot images
are regared as gallery images and images captured by surveil-
lance cameras at distance di, i=1, 2, 3 are used as probe im-
ages. We take CASIA-WebFace images of size 112x96 as HR
images and those of 112x96, 30x30, and 20x20 as LR images
for training of the TCN at distance of d3, d2, and d1, respec-
tively. For the SCFace dataset, 50 out of 130 subjects are
randomly chosen for fine-tuning and rest of the subjects are
for testing. As such, there is no identity overlap between the
training and testing sets. The same face images from CASIA-
WebFace and SCFace datasets are used for the fine-tuning of
VGGFace and ResNet models. The nearest-neighbor classi-
fier is used to classify all probe images. We compare with the
state-of-the-art CRFR methods, MDS [15, 26], DMDS [16],
LDMDS [16], RICNN [27], No adaptation (NA), Fine-tuning
(FT), Trunk network [17] and DCR [17]. As we can see from
Table 2, the proposed TCN model also significantly outper-
forms the baselines on both two architectures, especially at
exceedingly low resolution. Especially, our method outper-
forms the best baseline DCR by 1.88% on average.

4. CONCLUSION

In this paper, we propose a novel end-to-end Transferable
Coupled Network (TCN) for cross-resolution face recog-
nition. The proposed TTL can well address the resolution
mismatch problem based on the selected cross-resolution
triplets. Besides, an online triplet selection method is intro-
duced to make the model more efficient and stable. Extensive
experiments on public LFW and SCFace datasets empirically
demonstrate the effectiveness of the proposed TCN model.
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