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ABSTRACT

In this paper, we present a method to handle data imbalance

for classification with neural networks, and apply it to acous-

tic event detection (AED) problem. The common approach

to tackle data imbalance is to use class-weights in the objec-

tive function while training. An existing more sophisticated

approach is to map the input to clusters in an embedding

space, so that learning is locally balanced by incorporating

inter-cluster and inter-class margins. On these lines, we pro-

pose a method to learn the embedding using a novel objective

function, called triple-header cross entropy. Our scheme inte-

grates in a simple way with back-propagation based training,

and is computationally more efficient than general hinge-loss

based embedding learning schemes. The empirical evaluation

results demonstrate the effectiveness of the proposed method

for AED with imbalanced training data.

Index Terms— Data imbalance, embedding space, acous-

tic event detection, neural networks, classification

1. INTRODUCTION

Given an imbalanced dataset for classification, several meth-

ods have been proposed to make the learning effective [1–3].

One of the common approaches is to over-sample the under

represented classes and/or under-sample the over represented

classes by some factor such that in every batch or epoch, the

learning algorithm sees the same number of instances from

each class. Similar effect can be obtained by modifying the

loss function so as to give higher weights to the samples of

the under represented class. Data augmentation by generat-

ing synthetic data is another approach to handle data imbal-

ance [4].

Another line of attack to this problem is by using em-

beddings [5–7]. The idea here is that instead of optimizing

the classification loss function directly, we learn an embed-

ded space with additional constraints to take care of problems

like data imbalance. The embedded features thus obtained

can be classified by a simple classifier. Huang et al. [6] pro-

posed cluster based constraints to take care of data imbalance

in image analysis. The embedding space is learned to op-

timize class-based as well as cluster-based margins with the
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help of a triple-header loss function that uses quintuplets sam-

pled from the data. However, finding the quintuplets for each

sample in every iteration, on the basis of pair-wise distances

between points, is a time-consuming process, with time com-

plexity proportional to the square of the number of samples.

In this paper, we propose a back-propagation based scheme to

learn the embedding. We propose a loss function that incor-

porates class-based as well as cluster-based constraints in an

efficient way, without having to sample quintuplets or triplets

from the data, reducing the time complexity to be linear w.r.t.

the number of samples.

We apply this method to the problem of acoustic event

detection (AED), which entails detecting specific events in

the surroundings from the audio. AED has got great appli-

cations [8] in areas like home security, wildlife monitoring,

self-driving cars, smart home appliances, etc. DCASE [8]

is a popular challenge that has been pushing efforts on this

problem. Various approaches have been proposed for AED,

like hidden Markov models [9], non-negative matrix factor-

ization [10], bag-of-features [11]. Neural network based ap-

proaches using recurrent neural networks are being widely

used these days [12–15]. Standard machine learning meth-

ods assume a balanced distribution of data, e.g., in DCASE

challenges. However, in practice, the data is highly imbal-

anced across different categories of sound events, e.g. Au-

dioSet data [16]. The effort involved in data collection and

annotation makes it extremely difficult to have balanced data

in real applications, especially while dealing with rare events.

2. ACOUSTIC SCENE CLASSIFICATION WITH

NEURAL NETWORKS

Given the acoustic features xi of an audio sample i ∈
{1, 2, ..., I}, the goal is to label xi with L acoustic event

labels. Here, xi ∈ R
X×N , with X as the feature dimension

at each time frame, and N as the number of time frames.

A prediction model f is trained such that f(x) predicts the

corresponding acoustic event labels. The output of the model,

f(xi), is a vector yi ∈ R
L, whose element yil is the probabil-

ity that the event l is present in the audio sample i. The model

is trained in a supervised way. While training, the ground

truth label vector ti ∈ {0, 1}L is given for each sample i.
We use a neural network as the prediction model. Various

layers of the network successively perform non-linear trans-
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formations on the input xi. To obtain the final output yi, a

sigmoid non-linearity is applied to the output of the last layer.

The loss function that is optimized during training is typically

the binary cross-entropy loss, given by

Lbin = −
∑

i,l

{til log yil + (1− til) log(1− yil)} (1)

The above loss works well for a balanced dataset. The

number of samples having the label l is given by Il =
∑

i til.
For a balanced dataset the values Il are approximately the

same for all l, while this is not so in the case of imbalanced

dataset. To handle imbalanced dataset, the loss function can

be modified as

LwBin = −
∑

i,l

{wltil log yil + (1− til) log(1− yil)} (2)

where, wl ∈ R is chosen to be inversely proportional to Il.
The above loss function ensures that the contribution of each

class to the loss function is balanced.

3. PROPOSED METHOD

In order to handle the data imbalance problem in classifica-

tion/detection, we learn an embedding with the help of con-

straints, which prevent any local imbalance in the data [6],

while maintaining the class-discriminativeness of the embed-

ded features. These embedded features can be further classi-

fied with a simple classifier, say a shallow neural network.

Given the input features xi and ground truth labels ti, we

learn an embedding E , such that the embedded features E(xi)
can readily be used to predict the labels yi.

We model the embedding with a neural network with the

output layer as the embedding layer. We constrain the output

E(xi) to be L2 normalized. Starting from an embedding ini-

tialized randomly or from a pre-trained network, we cluster

all the data E(xi) into roughly equal size clusters such that

each cluster contains data of a single class. Here, class refers

to each distinct value of ti. We denote the class of the sample

i with ci The size of each cluster is set to be the size of the

smallest class. For the class c with Ic samples, the number of

clusters is Kc = ⌊Ic/minc′{Ic′}⌋. Let ki ∈ {1, ...,K} de-

note the cluster assigned to the sample i, where K =
∑

c Kc.

Since, each class has several clusters associated with it, let ck
denote the class associated with the cluster k. This clustering

is performed using spherical K-means [17], i.e., K-means us-

ing cosine similarity rather than Euclidean distance, because

the embedding space is a hypersphere.

3.1. Learning the embedding

To learn the embedding without local class imbalance, the

basic idea is to map the input to clusters in the embedding

space such that the same-class clusters are closer to each other
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Fig. 1. Demonstration of Embedding learning with toy ex-

ample with three classes, viz., blue, green and red (different

shades of red for different clusters).
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Fig. 2. Overall schematic of the proposed model

than the different-class clusters. To achieve this, Huang et

al. [6] propose a triple-header hinge loss function, which re-

quires finding a quintuplet for each sample. The creation of

this quintuplet table is a computationally expensive step, with

computational complexity O(I2). Here we propose a triple-

header cross-entropy function to learn the embedding, reduc-

ing the computational complexity to O(IK), with K ≪ I .

Given a sample i, we can constrain its distance from the

centroids of other clusters, rather than from specific points

(as in [6]). Mathematically, denoting cosine similarity with

S(·, ·) and centroid of cluster k as Wk, we need to formulate

the loss function such that

S(E(xi),Wki
) > max

k′:k′ 6=ki,ck′=ci
S(E(xi),Wk′)

> max
k′′:k′′ 6=ki,ck′′ 6=ci

S(E(xi),Wk′′)
(3)

This equation implies that the sample embedding’s cosine

similarity with the centroid of cluster ki (first term), is more

than that with the centroid of the nearest same-class clus-

ter (second term), which in turn, is more than that with the

centroid of the nearest cluster of another class (third term).

Given the network E , we add a dense layer of dimension∑
c Kc that maps the embedding features E(xi) to a cluster

one-hot vector v̄i, such that v̄ik = δ(k − ki). We define

hi = W ⊺E(xi) (4)

where W is the weight matrix of the dense layer. We note

that E(xi) is L2 normalized, i.e., ||E(xi)|| = 1. If we also
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constrain each column of W to be L2 normalized, then hi

represents the cosine similarity between xi and each column

of W . Now, if we apply a non-linearity (say softmax) to hi

and train it (say with categorical cross-entropy loss) to clas-

sify the sample to ki, we are essentially maximizing the co-

sine similarity between E(xi) and the kith column of W , as

compared to that between E(xi) and any other column of W .

Thus, we can use this dense layer as a clustering function,

with columns of W as the centroids. To incorporate the con-

straint mentioned in Eq. (3), we define the non-linearity as

vik =
eαhik

eαhik + eαhik′−β′ + eαhik′′−β′′
(5)

where, k′ = argmax
k′:k′ 6=k,c

k′=ck

hjk′ (6)

k′′ = argmax
k′′:k′′ 6=k,c

k′′ 6=ck

hjk′′ (7)

β′, β′′ ∈ R are constants, such that β′′ < β′ to penalize

the different-class samples more than the same-class samples,

and α ∈ R>0 is a parameter to allow vik ⊂ (0, 1) to have val-

ues close to either extreme. Without α, ehik can lie only in

[e−1, e], thereby making the clustering ineffective. For im-

plementation, we combine α and L2 normalized W to make

W unnormalized. For training the embedding, categorical

cross-entropy loss can be used. The above training scheme

ensures even sampling over clusters. To further ensure even

sampling over classes, we weigh the clusters so that the loss

function becomes

LwXEnt = −
∑

i,k

maxk′{wk′}

wk

δ(k − ki) log vik (8)

where, wk =
∑

k′

δ(ck − ck′) (9)

After training the embedding, we might discard the dense

layer (Eq. (4)).

To show the effectiveness of embedding learning, we take

a toy example with 1000 samples of xi ∈ R
20 and 3 classes,

blue, green and red, with data distribution 1:1:4, respectively.

E is a single layer LSTM model with 3 nodes, whose output

lies on a 3D-sphere. Fig. 1 shows the progress of learning

until we get the final embedding where all three classes are

separated, with red class embedded into 4 clusters.

3.2. Training the Detector

Once the embedding E is learned, we can train a simple clas-

sifier to detect the events. Since our embedding is a neural

network, it is convenient to use a single dense layer to map

the embedding features to final detection output yi.

Without discarding the dense layer of Eq. (4), we add a

dense layer with L nodes as the output layer with sigmoid

non-linearity. It is trained using weighted binary entropy

Algorithm 1 Overall Training Algorithm

1. Learning the Embedding:

Initialize the neural network model E
for a fixed number of iterations, Niter do

Cluster E(xi) for each class c into Kc clusters

Add a classification layer (Eq. (4)) to E(xi), initialized

with cluster centroids

Tune only the classification layer for 2 epochs (Eq. (8))

Train end-to-end using Eq. (8) for Nepoch epochs

end for

2. Training the Classifier:

Add an output sigmoid layer of size L
Train just the output layer using Eq. (2)

Train end-to-end using Eq. (2)

Select the model with the least validation loss

function defined in Eq. (2). We experimented with two ways

of training. First, we trained only the output dense layer while

keeping the embedding layer fixed. Second, after tuning the

output layer, we trained the whole model end-to-end allowing

the embedding layers also to be updated. We call these two

models as Proposed1 and Proposed2, respectively.

The overall algorithm is outlined in Algorithm 1. Also,

Fig. 2 shows the overall architecture of the proposed system,

using the cluster and class colors of the toy example of Fig. 1.

4. EXPERIMENTS

In this paper, we focus on the problem of detecting rare

events, where we restrict each audio sample to have either

single or no event label present in it. This assumption is also

made in the DCASE 2017 challenge task 2 [18]. Our exper-

iments focused on three rare events, viz., dog barking, baby

cry and gun shot. As background, we took samples from

various other classes. We got the data from AudioSet [16].

Our dataset contained 36.0K samples for background, and

13.5K, 2.3K and 4.1K for dog barking, baby crying and gun

shot, respectively. The data ratio for the four classes used

for training, namely, dog barking, baby crying, gun shot and

background, respectively, was 6:1:2:16. The data was weakly

labeled [19], i.e., the start and end times of each event were

not given. The samples were partitioned into training (70%),

validation (20%) and test (10%) sets.

Each sample had an audio duration of 10s. From each au-

dio sample, we extracted 64 dimensional log mel filter bank

energies using a frame length of 25ms and a hop size of 10ms.

These features were normalized using the mean and variance

of the training data. For embedding E , we used two models

- LSTM and CNN - for two sets of experiments. The LSTM

model had single LSTM layer with 128 nodes. The CNN

model had two layers. The first layer consisted of 32 con-

volutional 7×7 filters with ReLU non-linearity, followed by

batch normalization and a 5×4 max pool, with a drop-out rate
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Fig. 3. DET curves for different models with data ratio

6:1:2:16; x-axis is FAR, y-axis is MR (%).

Class LSTM CNN

B P1 P2 B P1 P2

Dog 21.5 19.1 18.3 12.0 12.2 11.8

Baby 22.4 19.3 15.5 8.0 11.1 8.5

Gun 17.0 17.1 13.6 6.2 6.8 5.3

Overall 20.3 18.5 15.8 8.7 10.0 8.5

Table 1. EER for different models with data ratio 6:1:2:16.

Training method B is baseline, P1 is Proposed1 and P2 is Pro-

posed2. Best performance numbers in bold.

of 30%. The second layer had 64 filters of kernel size 7 with

ReLU activation, batch normalization, 100 × 4 max pooling

and 30% dropout. Each model was learned using Adam op-

timizer with an initial learning rate of 0.001. The batch size

was fixed to 64 per GPU with 8 GPUs running in parallel. The

learning proceeded for Niter = 5, and Nepoch was set to 30 in

all but last iteration, where it was set as 150. We set β′ = 5
and β′′ = 0. Same setting was used for training the detector,

but the training stopped when the loss on the validation data

stopped improving for more than 10 epochs.

As baseline, we used the same models, i.e., LSTM or

CNN as used for the embedding, followed by dense output

layers, but a different training algorithm, viz., the class-

weighted loss function (Eq. (2)). The training used the same

settings as those used for training the detector for the pro-

posed model.

We evaluated the models by plotting the detection error

tradeoff (DET) curves, i.e., the false alarm rate (FAR) vs the

miss rate (MR). For both these measures, a lower value in-

dicates a better model. Fig. 3 displays the DET curves for

different sizes of the data. As seen in Fig. 3, the Proposed1

method, i.e. without end-to-end tuning, performs comparable

to the baseline. Nevertheless, the end-to-end tuning, as in Pro-

posed2, further improves the performance. Also, we tabulate

the equal error rate (EER) for each method and for each class
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Fig. 4. DET curves for CNN trained with data ratio 2:2:1:26;

x-axis is FAR, y-axis is MR (%).

Model Dog Baby Gun Overall

Baseline 17.3 12.0 9.0 12.8

Proposed1 16.5 9.6 11.1 12.4

Proposed2 15.2 9.2 6.8 10.4

Table 2. EER for CNN model trained with different methods

with data ratio 2:2:1:26. Best performance numbers in bold.

in Table 1. The overall EER is computed with equal weight

to each class. The proposed2 method mostly brings improve-

ments in EER for all the events. Even if the Proposed2 CNN

does not do the best for baby-crying, it brings improvement to

the overall EER. The CNN model is deeper, has more param-

eters and is computationally slower as compared to the LSTM

model. Clearly, the performance of CNN based embedding is

better than the LSTM based embedding.

In another set of experiments, we downsampled the dog

barking and gun shot classes in training and validation sets

to make the data ratio 2:2:1:26. This data had more imbal-

ance between the background and the classes of interest. The

DET curves and EER values are shown in Fig. 4 and Table 2,

respectively. Here too, Proposed2 method performs the best.

The proposed method divides each class, especially the back-

ground in this case, into smaller clusters and enhances the

distinguishability amongst classes.

5. CONCLUSION

We presented an embedding-based method to perform classi-

fication with data imbalanced over different classes, and ap-

plied it to rare audio event detection task. We map the input to

an embedding space that ameliorates the data imbalance prob-

lem by splitting the large classes into uniformly sized clusters.

Similar method has been proposed earlier for image classifi-

cation task using triple header hinge loss. However, we pro-

pose a triple header cross-entropy loss, which makes the pro-

posed scheme computationally faster than the triple header

hinge loss based scheme, and is simpler to implement as it

integrates with the general back-propagation based learning.

The experiments substantiate improvements brought by the

proposed method over the popular class-weights based train-

ing. Further, the proposed method is fairly general, and can

well be applied to other classification problems.
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