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ABSTRACT

Reproducing kernel Hilbert spaces (RKHSs) have been at the
core of successful non-parametric tools in signal processing, statis-
tics, and machine learning. Despite their success, the computational
complexity of these models often hinders their use in practice. In-
deed, fitting RKHS models typically relies on representer theorems
to express the solution space as a combination of kernels evaluated at
the training samples. Thus, the computational cost of evaluating these
models is proportional to the number of training samples, which in
many applications is prohibitively high. This issue is often addressed
by sparsifying the coefficients of the kernel expansion, despite the
fact that classical representer theorems no longer hold in the pres-
ence of sparsity penalties. In this work, we propose to directly tackle
sparse learning over RKHSs by posing it as a functional problem. In
other words, by formulating the RKHS model as a sparse, continuous
combination of atoms from an overparametrized, continuous dictio-
nary containing the value of the kernel evaluated at every point of
the function domain. We show that despite the infinite dimensional-
ity and non-convexity of the underlying optimization problem, these
models can be fit exactly and efficiently using duality. We illustrate
the performance of this technique in numerical experiments.

Index Terms— Kernel methods, RKHS, sparsity, kernel selec-
tion, functional optimization

1. INTRODUCTION

Reproducing kernel Hilbert spaces (RKHSs) methods are fundamen-
tal tools in signal processing, statistics, and machine learning [1–5].
These non-parametric techniques seek to fit the data using functions
lying in a given RKHS. The attractiveness of RKHSs comes from the
fact that their functions can be written as a (possibly infinite) linear
combination of so-called reproducing kernels evaluate over the func-
tion domain. Kernels in this context are simply positive definite func-
tions [2]. Furthermore, when fitting a function with an RKHS norm
penalty, representer theorems show that the solution can be expressed
as a combination of kernels evaluated only at the data points [6, 7].
In other words, the original functional program can be formulated
as finite dimensional problem. Nevertheless, this can lead to com-
putational complexity issues that hinder the use of RKHS models in
practice [5, 8, 9].

Although representer theorems reduce the problem of estimating
smooth functions in RKHSs to that of estimating coefficients of linear
combinations, there are as many coefficients as the number of training
samples. In many application, the resulting complexity of evaluating
the function is therefore prohibitively high. Typically, this issue is
addressed by imposing a sparsity penalty on the coefficients to reduce
the number of kernel evaluations. To cope with the combinatorial
nature of the resulting problem, `1-norm relaxations [10] or greedy

heuristics [8, 11] are then often deployed. Many of these methods,
however, implicitly rely on the classical representer theorems [6, 7],
despite the fact that they no longer hold in the presence of the sparsity
penalties (see Remark 1). Hence, even if the sparse problem could be
solved exactly, the solution would remain suboptimal with respect to
the original functional program.

In this work, we propose to directly tackle the problem of finding
the function in an RKHSs that fits the data and can be represented
with as few kernels as possible. To solve this non-convex, infinite
dimensional problem, we use an “overparametrize then simplify” ap-
proach. First, we express the functions in the RKHS as a (continuous)
combination of atoms from an overparametrized dictionary contain-
ing the kernel evaluated at every point of the domain. By minimizing
the support of the continuous combination coefficients when fitting
the model, i.e., by making them sparse, we simplify the function rep-
resentation and determine the minimum number of kernels necessary
and their centers. Despite the infinite dimensional and non-convex
nature of the resulting problem, it can be solved exactly and effi-
ciently using duality.

To derive this approach, we first formulate the sparse RKHS
model problem (Section 2.1) and recast it in functional terms (Sec-
tion 2.2). Then, we prove that strong duality holds for this functional
problem (Section 3.1), thus showing that it can be solved exactly
through its dual problem. Leveraging this result, we propose an algo-
rithm to fit sparse RKHS models (Section 3.2) and use it to illustrate
the effectiveness of this functional approach in finding parsimonious
RKHS models (Section 4).

2. PROBLEM FORMULATION

2.1. Parsimonious RKHS models

Consider the dataset {(xn, yn)}, n = 1, . . . , N , where xn ∈ Rp
is the n-th feature vector and yn ∈ R is the corresponding observa-
tion (or label for classification problems) and an RKHSH. Our goal
is to find a function f ∈ H such that the ŷn = f(xn) minimize some
loss with respect to yn. This problem, however, is underdetermined
for finiteN due to the infinite dimensionality of the function spaceH.
An additional penalty function ρ : H → R is used to overcome this
issue, leading to the optimization problem

minimize
f∈H

ρ(f)

subject to (yn − ŷn)2 ≤ ε, n = 1, . . . , N

ŷn = f(xn)

(PI)

where ε > 0 is a constant error bound. Though performance metrics
than the square loss can be used, we restrict ourselves to this case in
this manuscript for simplicity. The most common choice of penalty
promotes smoothness by taking ρ(f) = ‖f‖H, the RKHS norm [1,

3292978-1-5386-4658-8/18/$31.00 ©2019 IEEE ICASSP 2019



2, 8]. In this case, the representer theorem in [6, 7] can be used to
reduce the functional (PI) to a finite dimensional problem. Indeed, it
can be shown that the solution of (PI) regularized by the RKHS norm
is of the form

f(·) =

N∑
n=1

anκ(xn, ·), (1)

where κ : Rp × Rp is the reproducing kernel of H and an ∈ R. In
other words, f can be written as a combination of kernels evaluated at
the data points [6, 7]. Using (1), (PI) therefore reduces to optimizing
the coefficients an. Still, note that the computational complexity of
evaluating f is proportional to the sample size N , which can hinder
the use of RKHS methods in many applications [8, 12].

This issue is often addressed by incorporating a sparsity penalty
in the objective of (PI). To do so, observe that the reproducing kernels
of an RKHS form a basis for its functions, so that f ∈ H can be
written as a (possibly infinite) linear combination of kernels [13]. We
can therefore fit sparse RKHS models using

minimize
ai∈R, zi∈Rp

ρ(f) + γ
∞∑
i=1

I(ai 6= 0)

subject to (yn − ŷn)2 ≤ ε, n = 1, . . . , N

ŷn = f(xn) =

∞∑
i=1

aiκ(zi,xn)

(PII)

where I(ai 6= 0) = 1 when ai is non-zero and zero otherwise, γ > 0
is a parameter that controls the sparsity of the solution, and the zi
are the kernel centers. Notice that, in contrast to (1), f in (PII) is
written as an infinite combination of kernels over arbitrary centers.
In the presence of sparsity penalties, the representer theorem does
not hold (see Remark 1). In fact, using (1) in (PII), as is often con-
sidered in the literature, leads to suboptimal solutions since classical
representer theorems no longer hold in the presence of sparsity penal-
ties (see Remark 1).

Without relying on representer theorems, however, solving (PII)
is challenging due to its infinite dimensionality and non-convexity.
To overcome this issue, we reformulate (PII) as a sparse functional
program in the next section. At first, this may appear to be a distinc-
tion without a difference since sparse functional programs are both
infinite dimensional and non-convex as well. Nevertheless, this turns
out to be a fruitful approach in view of the strong duality result from
Section 3.1.

Remark 1. In the presence of sparsity penalties, as in (PII), classi-
cal representer theorems [6, 7] no longer hold and solutions are not
necessarily of the form (1). Indeed, consider the following counter-
example which we illustrate Figure 1. Construct a dataset by tak-
ing yi = fo(xi), where fo(x) = κ(z,x). Let f?γ be the solution
of (PII) for a given choice of parameter γ. Hence, we know f?0 must
have the form (1) due to the representer theorem in [7]. However,
notice that fo itself is the sparsest representation of this dataset, so
there exist Γ such that f?γ (·) = fo(·) for γ ≥ Γ. Thus, unless xi = z
for some i, the solution of (PII) need not be of the form (1).

2.2. A functional reformulation

Our approach to solving (PII) is to express its solutions as combi-
nations of atoms from an overparametrized, continuous dictionary
containing the kernel evaluated at every point of the domain. By im-
posing sparsity on the continuous combination coefficients, we then
simplify this functional model to recover the minimum number of
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Fig. 1. Signal with the kernel center not part of the sampling set

kernels and their centers. For this reason, we dub this approach “over-
parametrize then simplify.”

Formally, start by rewriting the definition of f in (PII) in func-
tional terms. In other words, replace the discrete coefficients an by a
function α : D → R, where D ⊂ Rp is a compact set representing
the domain of f . For instance, take D to be the convex hull of the
feature vectors xn. Then, write f as

f(·) =

∫
D
α(x)κ(x, ·)dx. (2)

Note that the definition of f in (PII) is recovered for α(z) =∑∞
i=1 aiδ(z−zi), where δ is the Dirac delta distribution. Hence, ev-

ery (PII)-feasible function can be written using (2). We can therefore
formulate the functional version of (PII):

minimize
α∈L2

∫
D

{
h [α(z),z] + γ I [α(z) 6= 0]

}
dz

subject to (yn − ŷn)2 ≤ ε, n = 1, . . . , N

ŷn = f(xn) =

∫
D
α(z)κ(z,xn)dz

(PIII)

where h is an arbitrary regularization function. For instance, (PIII)
can penalize the RKHS norm of the solution by taking h(x,z) =
x2
∫
D κ(z,y)dy. Due to space constraints, we consider h(x,z) =

x2/2 in what follows and thus take α ∈ L2 in (PIII). Though other
choices are possible, they will be explored in future work. It is worth
noting that since α in (PIII) is a function, it cannot contain Dirac
deltas. Thus, the solution of (PIII) α? is actually composed of bump
functions around the correct kernel centers (see Fig. 2).

Still, the issue remain of how to solve (PIII) given that, as (PII), it
is both infinite dimensional and non-convex. In the sequel, we show
that (PIII) has null duality gap and can be solved exactly and effi-
ciently using its dual problem.

3. FITTING SPARSE RKHS MODELS

3.1. Learning in the dual domain

We address the infinite dimensionality and non-convexity of (PIII)
by using duality. To be sure, the dual problem of (PIII) has dimen-
sion 2N and is convex by definition [14]. Still, it is not straightfor-
ward that a solution of (PIII) can be obtained by solving its dual. Al-
though duality is often used to solve semi-infinite convex programs,
this is due to the fact that strong duality holds under mild condi-
tions [15]. In this section, we show that this is also the case for (PIII).

To do so, we start by deriving the dual problem of (PIII). In-
troduce the dual variables λn ∈ R associated with the equality con-
straints and µn ∈ R+ associated with the inequality constraints, to
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write the Lagrangian of (PIII) as

L (α, ŷn, λn, µn) =

∫
D

{
α(z)2

2
+ γ I [α(z) 6= 0]

}
dz

+

N∑
n=1

λn

[
ŷn −

∫
D
α(z)κ(z,xn)dz

]

+

N∑
n=1

µn
{

(yn − ŷn)2 − ε
}

.

(3)

Thus, its dual function is given by

g(λn, µn) = min
α∈L2, ŷn

L(α, ŷn, λn, µn) (4)

and its dual problem can be written as

maximize
µn≥0

g(λn, µn). (DIII)

To show how a solution of (PIII) can be obtained by solv-
ing (DIII), we leverage the following result:

Theorem 1. Suppose that κ has no point masses (Dirac deltas) and
that Slater’s condition holds for (PIII). Then, (PIII) has null duality
gap, i.e., P = D for P , the optimal value of (PIII), and D, the
optimal value of (DIII).

Proof. See [16]. �

Theorem 1 provides an efficient way of solving (PIII). Indeed,
let λ?n, µ?n be solutions of (DIII) and α?, ŷ?n be solutions of (PIII).
Then, it holds that

(α?, ŷ?n) = argmin
α∈L2, ŷn

L(α, ŷn, λ
?
n, µ

?
n). (5)

The equality in (5) comes from the fact that the Lagrangian (3) is
strongly convex, so that the argmin set is a singleton [14]. Natu-
rally, the efficiency of this solution depends on being able to effi-
ciently evaluate the minimum in (4) and (5). The following proposi-
tion shows that this is indeed the case.

Proposition 1. Consider the Lagrangian in (3). Then, the minimum
in (4) is achieved for

αd(z, λn) =


N∑
n=1

λnκ(xn,z)

N∑
n=1

λnκ(xn,z) >
√

2γ

0 otherwise
(6)

ŷn,d(λn, µn) = yn −
λn
2µn

(7)

Proof. Start by noticing that the joint minimization in (4) can be sep-
arated into

g(λn, µn) = min
α∈L2

∫
D
F [α(z),z] dz

+ min
ŷn

N∑
n=1

[
λnŷn + µn(yn − ŷn)2

]
− ε

N∑
n=1

µn,
(8)

with F (a,z) = a2/2+γ I(a 6= 0)−
∑
n λnaκ(xn,z). The second

minimization in (8) is a simple quadratic program whose close form
solution is (7).

The first minimization, on the other hand, is a non-convex func-
tional problem. It can, however, be solved efficiently by leveraging
the separability F . To do so, we use the following lemma:

Algorithm 1 Stochastic dual ascent for (PIII)

λ
(0)
n = 0, µ(0)

n = 1
for t = 1, . . . , T

Draw zj , j = 1, . . . , J , uniformly at random from D

∂̂λn = yn−
λ
(t−1)
n

2µ
(t−1)
n

−
N∑
m=1

λ(t−1)
m

1

J

J∑
j=1

κ(xm,zj)κ(zj ,xn)

∂µn =

(
λ
(t−1)
n

2µ
(t−1)
n

)2

− ε

λ(t)
n = λ(t−1)

n + ηλ∂̂λn

µ(t)
n = µ(t−1)

n + ηµ∂µn

Compute α(t) using (6) with λ(t)
n

end

α? =
1

T

T∑
t=1

α(t)

Lemma 1. Let F (a,z) be a normal integrand, i.e., continuous in a
for all fixed z and measurable in z for all fixed a. Then,

inf
α∈L2

∫
D
F [α(z),z] dz =

∫
D

inf
a∈R

F (a,z)dz. (9)

Proof. See [17, Thm. 3A]. �

Theorem 1 implies that the minimization with respect to α in (8)
can be solved individually for each z. The problem then becomes a
scalar optimization problem involving a quadratic program followed
by thresholding as in (6). �

In the sequel, we propose an algorithm to obtain a solution
of (PIII) by solving its dual problem (DIII).

3.2. Solving the dual problem

In this section, we present an algorithm based on stochastic subgradi-
ent ascent that obtains a solution of (PIII) α? by solving (DIII). First,
recall that the constraint slacks evaluated at the dual minimizers are
subgradients of the dual problem [14]. Explicitly, using Proposition 1
we obtain

∂λng(λn, µn) = yn −
λn
2µn

−
N∑
m=1

λm

∫
S
κ(xm,z)κ(z,xn)dz (10)

∂µng(λn, µn) =
λ2
n

4µ2
n

− ε (11)

where S = {z ∈ D |
∑
n λnκ(xn,z) >

√
2γ}. Observe that eval-

uating (10) involves computing an integral over a set S that depends
on the dual variables. Although typical numerical integration meth-
ods such as Simpson’s method could be used, estimating (10) using
Monte Carlo integration leads to the stochastic subgradient method
described in Algorithm 1, where ηλ, ηµ > 0 are the update step
sizes and J is the mini-batch size. Taking J = 1 recovers the clas-
sical stochastic subgradient method. Since Monte Carlo integration
yields an unbiased estimator of the integral, ∂̂ is an unbiased estima-
tor of (10). Hence, typical convergence guarantees hold for Algo-
rithm 1 [18, 19].
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Fig. 3. Number of kernels needed to achieve error level for a function
made of m = 5 kernels.

4. NUMERICAL EXPERIMENTS

To illustrate the performance of the proposed functional approach, we
use a superposition of m Gaussian kernel with bandwidth σ = 0.5
to simulate functions fo used to generate the training set. Through-
out the experiments, the center x̄i of the Gaussian kernels and their
coefficients ai were drawn uniformly at random over D = [0, 10]
and [1, 2] respectively. The data pairs (xn, yn) are constructed by
selecting xn randomly from D and taking

yn = fo(xn) + vn, (12)

where {vn} are independent zero-mean Gaussian random variables
with variance E[v2n] = 10−3. We used the generalization MSE as
a figure of merit, which is evaluated over a separate test set contain-
ing 500 data points of the form (12).

We compare the performance of (PIII) with that of KOMP [11],
a commonly used backward greedy selection method that itera-
tively removes kernel centers until a preset estimation error is ob-
tained. For (PIII), we compute α? using Algorithm 1 with γ = 30,
ε = 10−3, and T = 1000 and extract the kernel centers from its
peaks (see Fig. 2). The ai are evaluated by solving a subsequent least
squares problem. Both methods used the true kernel bandwidth σ.

Figures 3 and 4 compares the number of kernels required by
KOMP to achieve the same generalization MSE as the solution ob-
tained by solving (PIII) for 1000 realizations of fo and data set of
sizes N = {2m, 4m, 6m}. First, notice that the functional approach
rarely uses more than the actual number of kernels m in fo. In con-
trast, KOMP often over estimates the number of kernels required to
describe fo. This is related to the fact that KOMP only places kernels
on the training samples. On the other hand, the current functional
approach can estimate the correct kernel centers. Finally, observe
that KOMP found a smaller number of kernels than (PIII) only 4%
and 0.4% of the realizations for m = 5 (Fig. 3) and m = 10 (Fig. 4)

Fig. 4. Number of kernels needed to achieve error level for a function
made of m = 10 kernels.
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Fig. 5. Generalization MSE as a function of number of kernels.

kernels respectively. This occured due to the choice of regularization
parameter γ and early stopping of Algorithm 1.

Figure 5 shows the evolution of the generalization MSE as the
number of kernels used increases for m = 10 and a training set
of N = 100 data points. Once again, the ability of (PIII) of mov-
ing the kernel centers beyond the training set allows it to achieve
significantly lower errors than KOMP. This disparity decreases the
number of kernels used increases. Observe that after placing ap-
proximately 25 kernels, the performance of (PIII) plateaus. This is
only 2.5 times more than the actual number of kernels in the func-
tion. For KOMP, a plateau is only reached after approximately 50
kernels are used.

5. CONCLUSION

We tackled the problem of finding a function in an RKHSs that fits the
data and can be represented with as few kernels as possible. To do so,
we formulated the RKHS model as a sparse, continuous combination
of atoms from an overparametrized dictionary containing the value
of the kernel evaluated at every point of the function domain. De-
spite the infinite dimensionality and non-convexity of this problem,
we proved that it has null duality gap and can therefor be solved ex-
actly and efficiently through its dual problem. We proposed a stochas-
tic subgradient ascent algorithm to solve this problem and illustrated
its performance in numerical experiments. We foresee that locally
adapting the kernel as well as the kernel center would allow for even
more parsimonious models and enable us to account for more chal-
lenging applications, such as those involving functions with varying
degrees of smoothness.
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