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ABSTRACT 

 

This paper addresses audio classification with limited 

training resources. We first investigate different types of 

data augmentation including physical modeling, wavelet 

scattering transform and Generative Adversarial Networks 

(GAN). We than propose a novel GAN method to embed 

physical augmentation and wavelet scattering transform in 

processing. The experimental results on Google Speech 

Command show significant improvements of the proposed 

method when training with limited resources. It could lift up 

classification accuracy from the best baselines of 62.06% 

and 77.29% on ResNet, to as far as 91.96% and 93.38%, 

when training with 10% and 25% training data, respectively. 

Index Terms— Audio Classification, Limited Training, 

Augmentation, Generative Adversarial Networks, Wavelet 

Scattering Transform 

 

1. INTRODUCTION 

 

It is well known that, current state-of-the-art deep learning 

[1]-[2] requires huge amount of labeled data that comes with 

enormous costs, especially in audio classification where 

more training data is needed to cover the variations caused 

by the uncontrollable nature of audio sources. Therefore, 

building a robust audio classification engine with limited 

training resources is an important and practical problem that 

we are going to address in this paper.   

 

Recent developments in related areas such as speech 

recognition and image classification suggest practical 

engineering solutions by employing data augmentation on 

top of available training data [3]-[6]. To improve the 

environmental robustness against noise and reverberation, 

speech samples were mixed with noises [3] to tackle with 

environments , or convolved to simulated or measured room 

impulse responses (RIRs) [4] to model the multi-paths and 

reverberations, or shifted in frequency or pitch scales to 

model the variations of vocal tracts [5]-[6].  We call these 

methods physical augmentation and that could be the first 

idea to be adopted in audio classification with limited 

training resources. Wavelet scattering transform is another 

great idea to combine augmentation with deep learning, 

particularly the Convolutional Neural Network (CNN) 

which is proven in image classification [7]-[8]. It is done by 

scattering 2-D image localized paths from wavelet 

transforms, to create more data variations before feeding 

into CNN layers of the classifier. In this paper, we also 

adopt this concept in the audio classification task. 

 

Using deep learning for augmentation is a next logical idea 

that we applied in our previous work [9] on through-the-

wall audio classification. When the audio recording involves 

many non-linear effects caused by modulation effects, 

physical augmentation and scattering transform are not 

applicable but deep learning can come to model the 

observations to supply samples to training. More advanced 

technology in this direction is the Generative Adversarial 

Networks (GAN), which simultaneously generates 

synthesized data for training and classifies the samples. The 

joint optimization of generator/discriminator could elegantly 

balance the over fitting and improve classification. It has 

achieved amazing results in image classification [10], 

speech synthesis [11], and recently being applied with a 

little success in noisy speech recognition [12], but not yet to 

be adopted in audio classification. 

 

In this paper, we first systematically investigate the 

augmentation methods, particularly: physical augmentation, 

wavelet scattering transform and GAN for audio 

classification with limited training resources. We than 

propose a new GAN design which allows embedding of the 

former two to significantly improve the classification 

accuracy. We note that besides augmentation and GAN 

methods, there are other methodologies to address the task 

such as model adaptation which has been applied in speech 

recognition [13], transfer learning of the model borrowed 

from other large-scale classification tasks [14] but those 

methods need relatively good starting points and that is not 

always trivial in audio classification. Using unsupervised 

data is also another effective way to address the task but we 

will leave it for future works and just focus on developing 

augmentation-based GAN approaches to solve the problem 

without help from additional unsupervised data. 

 

The organization of the paper is as follows: next, in Sec. 2, 

we give the details of physical augmentation (PA), wavelet 

scattering transform (WST) and Generative Adversarial 

3262978-1-5386-4658-8/18/$31.00 ©2019 IEEE ICASSP 2019



 

Networks (GAN), before proposing novel schemes to embed 

the first two into GAN training. Sec.3 then reports 

experimental results on Google Speech Command data [15]. 

Finally, Sec.4 concludes the work. 

 

2. PHYSICAL AUGMENTATION AND WAVELET 

SCATTERING TRANSFORM EMEBDDED GAN 

 

In this section, we review the methods to address audio 

classification with limited training resources before 

proposing a novel GAN scheme to integrate the physical 

augmentation and wavelet scattering transform. 

 

2.1. Physical augmentation 

 

Physical augmentation is the simplest way of increasing 

amount of training data in audio and speech classification 

tasks. It has been successfully applied in far-field noisy 

speech recognition tasks, first with HMM-GMM [3] and 

then deep learning frame works [4]-[5]. Thanks to the linear 

property of sound propagation, far-field speech 𝑥(𝑡)  can be 

simply modeled as a convolution of clean speech 𝑠(𝑡)  and a 

room impulse ℎ(𝑡) response and further added to different 

noise type and levels 𝑛(𝑡)  to create noisy speech samples, 

denoted by  

 

𝑥(𝑡) = 𝑠(𝑡) ∗ ℎ(𝑡) + 𝑛(𝑡)   (1) 

 

The second type of physical augmentation is vocal tract 

length normalization (VTLN) [6], where the basic idea 

comes from the observation of frequency shifting of vocal 

sounds due to the vocal tract length change. It can be 

described by adding a linear (or bi-linear) modulation 

𝜑𝑉𝑇𝐿𝑁(𝜔) [6] to the signal spectrum denoted by 

 

𝑋(𝜔) → 𝑋[𝜑𝑉𝑇𝐿𝑁(𝜔)]    (2) 

 

The third type of augmentation is the effect of speaking rate 

in vocal sound production. It creates a wrapped time signal 

which translates into linear scaling in frequency domain 

 

𝑥(𝛼𝑡) →
1

𝛼
𝑋 (

𝜔

𝛼
)     (3) 

 

But unlike VTLN, speaking rate augmentation changes the 

signal duration in time domain. In this work, we combine all 

three physical augmentations above which transform one set 

of training data into three equal data sets with varying 

parameters of SNR, VTL, speaking rate, as shown in Fig. 1. 

 

2.2. Wavelet scattering transform 

 

The physical nature of vocal and non-vocal sound 

production leads to the effects of time, pitch or frequency 

shifting and fluctuation of modulation curves, hence 

translation invariance and deformation stability are the key 

 
Figure 1: Physical augmentation generation 

 

factors to deliver a robust classifier. Basically, CNN, 

particularly its pooling operation, is understood as a main 

engine for invariance for small shifts and distortions [16], 

although the latest works have shown the limitation of its 

effectiveness [17]. Wavelet scattering transform (WST) [18] 

is viewed as a physic-driven CNN layer to allow invariance 

in translations and deformation stability. It was successfully 

applied in computer vision [19] and in this paper we adopt 

this concept for audio classification of spectrograms. Given 

an audio spectrogram 𝑥, WST exploits multi-scale analysis 

using a cascade of wavelet filter 𝜓𝜆𝑘,𝜃𝑘
, and convolving 

with local averaging filter 𝜙𝐽 with a spatial window of scale 

2𝐽, where 𝜆 is the scale of the wavelet and 𝜃 is angular 

sector. Zeroth-order scattering coefficient denoted by 

 

𝑆0x = x ∗ 𝜙𝐽                                    (4) 

 

Next order of the scattering coefficients can be obtained as 

 

𝑆𝑘x(𝜆1, . . , 𝜆𝑘 , 𝜃1, . . 𝜃𝑘) = {| x ∗ 𝜓𝜆1,𝜃1
| ∗ 𝜓𝜆2,𝜃2

| … ∗

𝜓𝜆𝑘,𝜃𝑘
| ∗ 𝜙𝐽}

𝜆𝑘≤𝐽,𝜃𝑘=2𝜋
𝑙

𝐿
,1≤𝑙≤𝐿

   (5) 

 

Fig.2 shows the concept of 2-layers WST with CNN 

network. It can be considered as a type of data augmentation 

which increases the variation of audio spectrogram in the 

training.  

 

 
Figure 2: The basic diagram of a 2-layers wavelet 

scattering transform as a first layer of the CNN classifier. 
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Figure 3: Generator learned how to sample from real data 

distribution 𝑝𝑑𝑎𝑡𝑎  

 

2.3. Generative Adversarial Networks (GAN) 

 

In our previous work [9], we applied LSTM for data 

augmentation in a task of through-the-wall audio 

classification. However, a serious problem of deep learning 

augmentation is the over-fitting situation. GAN [20] is 

elegantly and effectively designed to solve this problem. 

The original idea here is to employ a pair of networks, 

generator and discriminator, to bring closer the distributions 

of real and fake (simulated) data in order to improve the 

original classification problem, as seen in Fig.3. 

 

AC-GAN (Auxiliary Classifier Generative Adversarial 

Network) is a newer GAN method [21] to address the multi-

class classification. The main difference here is that that the 

multi-class training label is fed to the generator to create 

specific label oriented fake samples while the discriminator 

simultaneously and auxiliary optimize both multi-class and 

fake/non-fake objectives and by doing so could prevent the 

occurrence of over-fitting. We note that GAN has not been 

yet applied in similar tasks for audio classification.  

 

2.4. Augmentation GAN 

 

In this paper, we propose a novel GAN scheme to allow 

embedding of the physical augmentation and wavelet 

scattering transform into GAN. We call our GAN 

augmentation-GAN (augGAN). The block diagram of the 

augGAN is shown in Fig.4. Similarly to AC-GAN [21], the 

multi-class labels are fed to the generator together with 

random   noises to simulate training samples. But unlike 

AC-GAN, both of the real, the physically augmented and 

the faked data join to the discriminator. The discriminator 

will simultaneously optimizes two objective functions for 

binary (real/fake) and multi-class classification but the  

 
Figure 4: The block diagram of GAN integrated with 

physical augmentation and wavelet scattering transform. 

 

optimization is performed on generated, real and physically 

augmented data. The wavelet scattering transform is 

embedded in the first layer of the discriminator to improve 

the translation invariance and deformation stability of the 

classifier. Another difference to the original AC-GAN is 

that both generator (G) and discriminator (D) adopt the 

ResNet architecture [23]. Cross-entropy criteria are used in 

both G and D with ResNet architecture. The experiments in 

next section will show the effectiveness of augGAN when 

training with limited resources. Note that there are more 

recent GAN schemes which allow usage of unsupervised, 

unlabeled data to boost the classification accuracy but that is 

out of the scope of this paper which focuses on the problem 

of limited resources. 

 

3. EXPERIMENTS AND RESULTS 

 

In this section, we evaluate and compare methods for audio 

classification with limited training resources. 

 

3.1. Data Description 

 

The Google Speech Commands Dataset [15] is used in our 

experiments. The dataset has 65,000 one-second long 

utterances of 30 short voice commands and are spoken by a 

variety of speakers. Ten core command words were 

selected, they are "Yes", "No", "Up", "Down", "Left", 

"Right", "On", "Off", "Stop", "Go".  To emphasize the 

limited training data situations, we investigate two 

scenarios: using 10% (200 samples per class) and 25% (450 

samples per class) of the original training data. We note that 
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using full training data would achieve 96%-97% overall 

classification accuracy with the ResNet design (compared to 

95% baseline in [24]) 

 

3.2. Methods 

 

The following methods have been implemented and 

evaluated with the noted two training situations. 

 Baseline ResNet-18: The best fine-tuned baseline. 

 WST + ResNet: WST is added into ResNet 

 GAN_ResNet: AC-GAN with ResNet designs in 

both G and D 

 WST + GAN_ResNet: WST is added into GAN’s 

discriminator  

 Physical augmentation + ResNet: Physical 

augmentation on top of baseline ResNet 

 Physical augmentation + WST + ResNet: 

Augmentation followed by WST added ResNet 

 Physical augmentation + GAN_ResNet: 

Physical augmentation followed by GAN 

 Physical augmentation + WST + GAN_ResNet: 

Full version of proposed AugGAN 

Unique signal processing is performed by 32x32 segmented 

Mel-spectrogram and scaling to the range [-1, 1]. We train 

augGAN with mini-batches of 64 with a learning rate of 

0.0002 for 250 epochs. To improved GAN stability, we used 

embedding layer [22] acts as look-up table, LeakyReLU, 

average pooling and Adam optimization was adopted. 

 

Generator Architecture: We take the Resnet-18 [23], as a 

reference and construct a similar architecture. The generator 

network takes input as a 100-dimension random vector 

drawn from a Gaussian distribution and output spectrogram 

images of size 1x32x32. Class labels from training data are 

embedded in the fully connected layer through a look-up 

table. The output reshape to 512x4x4 and 4 residual stages 

of 2 blocks each with a 3x3 kernel size, 1x1 stride, 1x1 

padding and up-samples the spectrogram image with scale 

2. The ReLU activation function with slope of the leak of 

0.2 is applied to all layers except the output layer which uses 

a tanh activation function.  

 

Discriminator Architecture: The discriminator network has 

similar architecture as the generator except for the first 

ResNet blocks which are replaced with wavelet scattering 

transform coefficients, as shown in figure 2. In this work, 

we used a two-layer wavelet scattering transform and Morlet 

wavelets. The final scattering coefficients, have a size equal 

to 1 + 𝐽𝐿 +
1

2
𝐽(𝐽 − 1)𝐿2 where J=2 and L =8, and the 

original size is down-sampled by a factor 2𝐽. Average 

pooling is applied to last ResNet block with a kernel size of 

4 and stride of 4. The output consists of two separated fully 

connected layers, one with a sigmoid (adversarial classifier) 

and another has a softmax output distribution (auxiliary 

classifier). All the methods were implemented on PyTorch.  

3.3. Overview of Results 

 

Method 

Accuracy 

10%   

training data 

25%  

training data 

No physical augmentation 

ResNet-18 (baseline) 

WST + ResNet 

GAN_ResNet 

WST + GAN_ResNet 

 

62.06% 

78.42% 

74.68% 

88.55% 

 

77.29% 

85.66% 

83.95% 

90.30% 

With physical augmentation 

ResNet-18 

WST + ResNet  

GAN_ResNet 

WST + GAN_ResNet 

 

80.25% 

84.61% 

85.39% 

91.96% 

 

89.44% 

89.91% 

91.86% 

93.38% 

Table 1: Overall classification accuracies over methods 

 
yes No up down left right on off stop go 

240 1 0 4 5 0 1 0 2 3 

0 216 0 17 2 1 0 1 1 14 

1 1 253 1 4 0 1 3 6 2 

1 11 0 228 0 0 1 1 1 10 

3 0 3 4 254 1 2 0 0 0 

1 0 0 2 1 251 1 0 0 3 

0 0 0 3 0 1 240 2 0 0 

0 1 7 2 0 0 13 229 3 5 

0 0 4 6 3 0 0 0 232 4 

0 17 3 10 0 1 0 0 2 218 

Table 2: Confusion matrix – train with 200 samples/class 

 

Table 1-2 reports overall classification accuracies and 

confusion matrix over augmentation methods. We can see 

that for a “single” augmentation, physical augmentation is 

still the most effective compared to WST or GAN. WST is 

also very effective as it increases the data size by 81 times 

by performing scattering. All the methods are 

complementary. GAN looks less effective when used alone 

but greatly improves single augmentation, particularly with 

WST. It can be explained that by introducing a pair of 

generator/discriminator, the sample generation is well 

balanced hence making better use of huge multiplication of 

sample by scattering transforms resulting a boost over its 

normal data fitting capability. 

 

Finally, the full version of augmentation GAN, taking 

advantage of physical augmentation, and wavelet scattering 

transform into GAN could significantly improve audio 

classification with limited training resources. It achieved 

91.96% and 93.38% classification accuracies using only 

10% and 25% training data, respectively.  

 

4. CONCLUSIONS 

 

This paper proposes a novel augmentation GAN which 

allows embedding of physical augmentation and wavelet 

scattering transforms into GAN scheme to address the task 

of audio classification with limited training resources. The 

experimental results show that the proposed method could 

greatly improve the classification accuracy coming close to 

full training range with just 25% of its resources.  

3265



 

REFERENCES 

 
 

[1] Jort F. Gemmeke, Daniel P. W. Ellis, Dylan Freedman, Aren 

Jansen, Wade Lawrence, R. Channing Moore, Manoj Plakal and 

Marvin Ritter, “Audio Set: An ontology and human-labeled dataset 

for audio events,” ICASSP, pp. 776-780, 2017. 

 

 [2]Aren Jansen, Jort F. Gemmeke, Daniel P. W. Ellis, Xiaofeng 

Liu, Wade Lawrence and Dylan Freedman, “Large-scale audio 

event discovery in one million YouTube videos,” ICASSP, pp. 

786-790, 2017. 

 

[3] H.G.Hirsch and D. Pearce, “The Aurora experimental 

framework for the performance evaluation of speech recognition 

systems under noisy conditions,” Proceedings of the ISCA 

workshop ASR2000, Paris, France, 2000. 

 

[4] Jonathan William Dennis and Tran Huy Dat, “Single and multi-

channel approaches for distant speech recognition under noisy 

reverberant conditions: I2R'S system description for the ASpIRE 

challenge,” ASRU, pp. 518-524, 2015. 

 

[5] Tom Ko, Vijayaditya Peddinti, Daniel Povey and Sanjeev 

Khudanpur, “Audio augmentation for speech recognition,” 

INTERSPEECH, 2015. 

 

[6] Puming Zhan and Alex Waibel, “Vocal Tract Length 

Normalization for Large Vocabulary Continuous Speech 

Recognition,” CMU COMPUTER SCIENCE TECHNICAL 

REPORTS, 1997. 

 

[7] Stephane Mallat, “Group Invariant Scattering,” 

Communications on Pure and Applied Mathematics, vol. 65, no. 

10, pp. 1331–1398, Oct. 2012. 

 

[8] Edouard Oyallon, Stéphane Mallat and Laurent Sifre, “Generic 

Deep Networks with Wavelet Scattering.” CoRR, pp. 

abs/1312.5940, 2013. 

 

[9] Tran Huy Dat, Wen Zheng Terence Ng and Yi Ren Leng, 

“Data Augmentation, Missing Feature Mask and Kernel 

Classification for Through-the-Wall Acoustic 

Surveillance,” INTERSPEECH, pp. 3807-3811, 2017. 

 

[10] Tim Salimans, Ian J. Goodfellow, Wojciech Zaremba, Vicki 

Cheung, Alec Radford and Xi Chen, “Improved Techniques for 

Training GANs,” NIPS, pp. 2226-2234, 2016. 

 

[11] Saito, Yuki, Shinnosuke Takamichi, and Hiroshi Saruwatari, 

“Statistical Parametric Speech Synthesis Incorporating Generative 

Adversarial Networks,” IEEE/ACM Transactions on Audio, 

Speech, and Language Processing, 2017. 

 

[12] Ke Wang, Junbo Zhang, Sining Sun, Yujun Wang, Fei Xiang 

and Lei Xie, “Investigating Generative Adversarial Networks 

based Speech Dereverberation for Robust Speech Recognition,” 

arXiv preprint, pp. arXiv:1803.10132, 2018. 

 

[13] Yajie Miao, Hao Zhang and Florian Metze, “Towards Speaker 

Adaptive Training of Deep Neural Network Acoustic Models,” 

INTERSPEECH, 2014. 

 

[14] Yusuf Aytar, Carl Vondrick and Antonio Torralba, 

“SoundNet: Learning Sound Representations from Unlabeled 

Video,” NIPS, 2016. 

 

[15] Warden P, "Speech Commands: A public dataset for single-

word speech recognition," 2017.  

 

[16] Avraham Ruderman, Neil C. Rabinowitz, Ari S. Morcos and 

Daniel Zoran, “Learned Deformation Stability in Convolutional 

Neural Networks,” CoRR, pp. abs/1804.04438, 2018. 

 

[17] Yann LeCun, Bernhard E Boser, John S Denker, Donnie 

Henderson, Richard E Howard, Wayne E Hubbard, and Lawrence 

D Jackel, “Handwritten digit recognition with a backpropagation 

network,” In Advances in neural information processing systems, 

pp. 396–404, 1990. 

 

[18] Edouard Oyallon, Eugene Belilovsky and Sergey Zagoruyko, 

“Scaling the Scattering Transform: Deep Hybrid Networks,” 

CoRR, pp. abs/1703.08961, 2017. 

 

[19] Edouard Oyallon, Sergey Zagoruyko, Gabriel Huang, Nikos 

Komodakis, Simon Lacoste-Julien, Matthew B. Blaschko and 

Eugene Belilovsky, “Scattering Networks for Hybrid 

Representation Learning,” CoRR,  pp. abs/1809.06367, 2018. 

 

[20] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-

Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative 

adversarial nets,” ArXiv e-prints, pp. arXiv:1406.2261, June 2014. 

 

[21] A. Odena, C. Olah, and J. Shlens, “Conditional image 

synthesis with auxiliary classifier gans,” arXiv preprint, pp. arXiv: 

1610.09585, 2016. 

 

[22] Yoon Kim, “Convolution Neural Networks for Sentence 

Classification.” arXiv preprint, pp. arXiv:1408.5882, 2014. 

 

[23] Kaiming He, Xiangyu Zhang, Shaoqing Ren and Jian Sun, 

“Deep Residual Learning for Image Recognition.” arXiv preprint, 

pp. arXiv:1512.03385, 2015. 

 

[24] Raphael Tang and Jimmy Lin, “Deep Residual Learning for 

Small-Footprint Keyword Spotting.” arXiv:1710.10361v2, 2018. 

 

3266


		2019-03-18T11:05:48-0500
	Preflight Ticket Signature




