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ABSTRACT
The task of clustering unlabeled time series and sequences
entails a particular set of challenges, namely to adequately
model temporal relations and variable sequence lengths. If
these challenges are not properly handled, the resulting clusters
might be of suboptimal quality. As a key solution, we present a
joint clustering and feature learning framework for time series
based on deep learning. For a given set of time series, we train
a recurrent network to represent, or embed, each time series
in a vector space such that a divergence-based clustering loss
function can discover the underlying cluster structure in an
end-to-end manner. Unlike previous approaches, our model
inherently handles multivariate time series of variable lengths
and does not require specification of a distance-measure in
the input space. On a diverse set of benchmark datasets we
illustrate that our proposed Recurrent Deep Divergence-based
Clustering approach outperforms, or performs comparable to,
previous approaches.

Index Terms— Time series clustering, variable length
data, end-to-end trainable.

1. INTRODUCTION
The vast amounts of complex data that need to be catego-

rized in an unsupervised manner, makes clustering [1, 2] one
of the key areas in machine learning and of growing impor-
tance. In many cases it is unrealistic, or even infeasible, to
label individual data points for supervised learning.

The majority of classical clustering algorithms requires
the data to reside in a vector space equipped with some dis-
tance function or similarity measure. However, for complex
datatypes, such as images or sequences, this requirement is
not necessarily met. Much research in the machine learning
field has therefore been invested in the development of fea-
ture extraction techniques for such datatypes. These produce
vectorial representations embedded in a space with a suitable
distance measure. Such methods are often computationally
complicated procedures that may not be robust across different
domains and data types. Post computation, the features can be
clustered using e.g. k-means [3], Hierarchical Clustering [4],
or Spectral Clustering [5]. However, there is no guarantee that
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the extracted features are well suited for the selected clustering
algorithm, which causes the quality of the resulting clusters to
depend heavily on the representation.

Supervised deep learning has seen tremendous recent de-
velopments for end-to-end representation learning [6], wherein
the data representation is obtained as an integral part of the opti-
mization of the neural network classifier [7, 8]. The translation
of these achievements to the unsupervised case of clustering,
has been hailed as a main next goal in machine learning [9].
Several works have been proposed along these lines over the
last couple of years, nevertheless such research is still in its
infancy.

Deep Embedded Clustering (DEC [10] and IDEC [11]),
the Deep Clustering Network (DCN) [12], and the Categorical
GAN (CatGAN) [13], are some examples of novel unsuper-
vised deep learning architectures. In these models the raw
input signal is processed by a deep neural network, produc-
ing a vectorial representation. Based on this representation,
the subsequent parts of the model then computes the cluster
membership prediction. In DEC, for example, a set of inputs
are processed by a Multilayer Perceptron (MLP) to produce a
corresponding set of hidden representations. The hidden repre-
sentations are then softly assigned to a set of centroids, based
on Euclidean distance in the space of hidden representations.
The joint optimization of MLP-parameters and centroids then
allows the feature generating MLP to adapt based on the clus-
tering of the hidden representations. The MLP is pre-trained as
a stacked autoencoder to ensure that the hidden representations
preserve some of the structure present in the input space.

Another recent architecture that incorporates similar ideas,
is Deep Divergence-based Clustering (DDC) [14]. DDC was
originally designed for image clustering, and therefore uses
a convolutional neural network (CNN) for feature extraction.
Cluster assignments are obtained by a clustering module based
on information theoretic quantities computed using the repre-
sentations produced by the CNN. Moreover, DDC does not
require autoencoder initialization, and can therefore be trained
from start to finish without modifications to the architecture.

On the other hand, when it comes to the virtually om-
nipresent domain of sequential data, none of the aforemen-
tioned end-to-end clustering methods are directly applica-
ble. Learning to Cluster (L2C) [15] is a model designed for
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Fig. 1: An overview of the RDDC architecture. When the input
is processed by the RNN, two fully connected layers extract
the learned feature h, and cluster assignment α, respectively.

deep learning-based sequence clustering, but requires pairwise
weakly labeled observations during training, and is therefore
not fully unsupervised.

In this paper we propose a novel end-to-end architecture for
joint representation learning and clustering of sequential data.
Our model aims to address some of the challenges that arise
when modeling sequential data, namely variable sequence
length, multivariate elements, and complex temporal depen-
dencies. We do this by integrating a recurrent neural network
within an architecture building on the DDC framework, which
we refer to as Recurrent Deep Divergence-based Clustering
(RDDC).

By this, we leverage the power of DDC which has proven
to perform well on image clustering without relying on extra
model components for initialization.

2. METHOD
A conceptual overview of the RDDC architecture is pro-

vided in Fig. 1. Suppose we have n input sequences x1, . . .xn
to cluster. First, these are processed by the RNN, which is two-
layer bidirectional Gated Recurrent Unit [8]. The final hidden
states of the RNN are concatenated and passed on to a Batch
Normalization transformation [16] producing the intermediate
variables y1, . . . ,yn. Subsequently, they are transformed by
the first fully connected layer to obtain the hidden representa-
tions h1, . . .hn. Finally, the hidden representations are passed
through the fully connected output layer with a softmax activa-
tion function, to produce the (soft) cluster membership vectors
α1, . . . ,αn.
2.1. Loss function

The model is trained end-to-end using a loss function
which is designed with three key properties in mind: (i) Cluster
separability and compactness. (ii) Cluster orthogonality in the
observation space. (iii) Closeness of cluster memberships to a
simplex corner.

The DDC loss function consists of three terms. The first
term tackles the separability and compactness property out-
lined above. Consider the multiple-pdf generalization of the

Cauchy-Schwartz (CS) divergence [17]:

Dcs = − log

1

k

k−1∑
i=1

∑
j>i

EH∼pi(pj(H))√
EH∼pi(pi(H))EH∼pj (pj(H))


(1)

where k is the number of distributions, and EX∼p(g(X)) de-
notes the expectation of g(X) when X has distribution p. If
we let each pi represent a cluster, a large divergence would
lead to well separated and compact clusters. Maximizing (1) is
equivalent to minimizing the argument of the logarithm, which
gives the loss term

L1 =
1

k

k−1∑
i=1

∑
j>i

EH∼pi(pj(H))√
EH∼pi(pi(H))EH∼pj (pj(H))

. (2)

Using the kernel density estimator [18] with a Gaussian kernel
to estimate p1, . . . , pk gives

L1 =
1

k

k−1∑
i=1

∑
j>i

aTi Khaj√
aTi KhaiaTj Khaj

(3)

where Kh = [klm], klm = exp
(
− ||hl−hm||2

2σ2

)
. The vectors

a1, . . .ak denote the columns of the n × k hard cluster as-
signment matrix A. During optimization, we relax the hard
membership constraint to make the loss-function differentiable.
Thus, we can form A by stacking the soft cluster assignment
vectors α1, . . . ,αn row-wise.

The second term in the loss function is designed such that
the clusters are orthogonal in the n-dimensional observation-
space. This accounts to the matrix A having orthogonal
columns, which motivates the loss L2 = triu(ATA), where
triu(·) denotes the sum of the strictly upper triangular ele-
ments of its argument. Note that this term differs from the
term triu(AAT ), which was originally used for DDC [14].
In contrast to the original loss term, our formulation does not
introduce a regularizing effect to the computation of cluster
membership vectors. In our experiments, we found that model
performance improved when said regularization effect was
removed.

The final term in the loss function is constructed such
that the cluster membership vectors lie close to a corner of
the simplex defined by the softmax activation function. Let
M = [mli], mli = exp(−||αl − ei||2), where ei is the i-th
cartesian basis vector of Rk (i-th corner of the simplex). Then,
the last loss term is

L3 =
1

k

k−1∑
i=1

∑
j>i

mT
i Khmj√

mT
i KhmimT

j Khmj

(4)

which is very similar to (3), but a1, . . . ,ak have now been re-
placed with m1, . . . ,mk, which denote the columns of M. If
we consider mqi as the soft assignment of cluster membership
vector q to simplex corner i, we can interpret L3 in the same
way as L1: The distributions of cluster assignment vectors
should be compactly centered around distinct simplex corners.
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The total loss function is a linear combination of the three
loss terms: L = L1 + w2L2 + w3L3 where w2 and w3 are
hyperparameters.

3. EXPERIMENTS
3.1. Experiment setup

To quantitatively evaluate the performance of our model
on sequential data, we use four different datasets. These were
selected as each of them represents a distinct, but commonly
observed, sequence-generating process. The variation in se-
quence length and dimensionality across the datasets should
provide broad insight into the capabilities of the model. The
datasets are:
• Character Trajectories (CT) [19]. The sequences form tra-

jectories of handwritten characters. A subset consisting of
the characters {a, b, c, d, e, g} was chosen for evaluation.
• Twenty Newsgroups (TN) [19, 20]. This dataset contains

news articles from different categories. Following the ex-
ample of [21, 22] we choose a subset of the data contain-
ing articles from distinct domains. The subset consists
of articles from alt.atheism, comp.graphics and
misc.forsale, with lengths between 50 and 300 words.
The articles were converted to 100-dimensional sequences
using a Skipgram-Word2Vec model [23].
• Speech Commands (SC) [24]: Each time series is a raw

sound recording of a single spoken English word. For eval-
uation, a subset consisting of the words {Yes, No} were
used.

Prior to being analyzed by the network, the data was
preprocessed in the following manner: (i) Crop to remove
leading and trailing periods of low activity in the recording.
(ii) Normalize such that each recording has zero mean and
unit variance. (iii) Compute short-time log-frequency filter
banks [1], using 12 bins, a window length of 15 ms, and a
window overlap of 7 ms.
• Arabic Digits (AD) [19]: The sequences consists of mel-

frequency cepstrum coefficients obtained from recordings
of spoken Arabic digits. For this dataset, all ten digits were
used.

The datasets were divided into training, validation and test
sets, each set receiving 80%, 10% and 10% of the samples,
respectively. The training set was used for training, the vali-
dation set for hyperparameter tuning/model selection, and the
test set for performance evaluation.

The model we use for testing is a two-layer bidirectional
GRU with 32 units in each layer, followed by the two fully
connected layers. The first fully connected layer has 16 units
for the Character Trajectories dataset and 32 units for the
Speech Commands, Twenty Newsgroups and Arabic Digits
datasets. In our experience, the model was not particularly
sensitive to the number of RNN or fully connected units. The
number of units in the output layer is the same as the number
of clusters in the dataset.

We compare our model to the following benchmark meth-
ods, which represent both classical clustering approaches, as

Table 1: Resulting accuracy (ACC) and normalized mutual
information (NMI) for the different models and datasets. Note
that in the published version of the Arabic Digits dataset, all
the sequences are normalized to have zero-mean, meaning that
the time averaging vectorization technique is not applicable.

CT TN SC AD
Model ACC NMI ACC NMI ACC NMI ACC NMI

k-m (Zero) 1.0 1.0 0.38 0.01 0.51 0.0 0.71 0.6
k-m (Crop) 1.0 1.0 0.56 0.35 0.54 0.0 0.51 0.48
k-m (Avg.) 0.87 0.79 0.96 0.88 0.58 0.03 – –
HC (Zero) 1.0 1.0 0.42 0.07 0.5 0.0 0.78 0.75
HC (Crop) 1.0 1.0 0.78 0.45 0.5 0.0 0.52 0.56
HC (Avg.) 0.87 0.84 0.78 0.53 0.57 0.04 – –
SC (Zero) 0.40 0.33 0.3 0.0 0.50 0.03 0.66 0.61
SC (Crop) 0.41 0.32 0.36 0.04 0.51 0.01 0.47 0.45
SC (Avg.) 0.69 0.67 0.95 0.8 0.51 0.01 – –

DEC (Zero) 1.0 1.0 0.37 0.01 0.51 0.0 0.66 0.67
DEC (Crop) 1.0 1.0 0.6 0.31 0.53 0.0 0.51 0.47
DEC (Avg.) 0.54 0.66 0.96 0.85 0.52 0.0 – –
DDC (Zero) 0.98 0.96 0.41 0.02 0.54 0.0 0.61 0.59
DDC (Crop) 1.0 1.0 0.49 0.26 0.54 0.0 0.43 0.43
DDC (Avg.) 0.73 0.68 0.9 0.69 0.59 0.03 – –

RDDC 1.0 1.0 0.88 0.69 0.74 0.19 0.80 0.77

well as more recent deep learning-based clustering approaches:
(i) k-means [3]. (ii) Ward-linkage Hierarchical Clustering [4].
(iii) Spectral Clustering [5]. (iv) DEC with the configuration
specified by the authors [10]. (v) DDC with just the last two
fully connected layers [14]. As these methods all require vec-
torial inputs of fixed length, they are implemented using each
of the following vectorization methods:
• Zero padding: Each time series is augmented with zero-

vectors such that its length matches the longest length in the
dataset.

• Cropping: All timesteps recorded after the shortest sequence-
length in the dataset are discarded.

• Time averaging: The vector average along the time axis is
computed for each sequence.

Finally, for the zero-padded and cropped sequences, we con-
catenate the remaining observations for each timestep, produc-
ing one vector for each sequence.

Our model is implemented in TensorFlow and trained on
stochastic mini-batches of size 200, using the Adam optimizer
[25]. Each DDC/RDDC model was trained for 150 epochs
from 20 different initializations on each data set. The model
resulting in the lowest value of the loss function was then
selected for further evaluation. The kernel width, σ was set
to 15% of the median pairwise distance between the hidden
representations h, within each batch, following [26]. The me-
dian was computed during each forward pass and treated as
fixed during the backward passes. After each training run, the
unsupervised clustering accuracy on the test set was computed
as ACC = max

M
1
n

∑n
i=1 δ(li −M(ci)) where li and ci is the

true label and the predicted cluster label of the i-th sequence,
respectively. The maximum runs over bijective cluster-to-class
maps, effectively finding the "best" cluster-to-class assignment
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Fig. 2: t-SNE representation of time-averaged sequences from
the Speech Commands dataset.

in terms of classification accuracy. We also compute the nor-
malized mutual information, defined as NMI = 2 I(l,c)

H(l)+H(c)

where I(l, c) is the mutual information between the predicted
cluster assignments and the true labels, and H(·) denotes the
entropy of its argument.

3.2. Quantitative results
The results of the experiments are listed in Tab. 1. These

show a large spread in performance between the different
benchmark methods and between the different vectorization
techniques. The highest performing vectorization technique
also seems to be data-dependent, potentially making the choice
difficult, especially if it has to be done in an unsupervised man-
ner. On the Speech Commands dataset, all of the benchmark
methods more or less fail, which indicates that they are unable
to correctly model the temporal dependence in the data.

Recall that for the Twenty Newsgroups dataset, the Skip-
gram model already takes some of the temporal dependence
into account by embedding nearby words close to each other.
We conjecture that this is the cause for the increase in perfor-
mance for the vector-based models, compared to the RNN-
based model. The performance gap is especially visible for
the time averaged vector representations.

3.3. Qualitative analysis
To further evaluate the validity of our results, we project

the time-averaged Speech Commands data down to two di-
mensions using t-SNE [27] (Fig. 2). The points in Fig. 2a
indicate that the length of the sequences is a neighborhood
determining feature. If we now consider the plot in Fig. 2c,
we see that k-means has learned to group sequences almost
solely based on their lengths. In the event that sequence length
was a reliable predictor for the class membership, this would
be acceptable. However, this is not the case, as can be seen in
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Fig. 3: t-SNE representation of sequences with lengths be-
tween 60 and 70 timesteps, from the Speech Commands
dataset.

Fig. 2b. Shifting our focus to the predictions of RDDC (Fig.
2d), we see that RDDC instead learns features which are not
directly related to the sequence lengths, making its predictions
more accurate with respect to the ground truth labels.

To eliminate the sequence length dependency, we remove
all sequences shorter than 60 timesteps and longer than 70
timesteps. For t-SNE and k-means, the remaining sequences
are then cropped to 60 timesteps, producing sequences of equal
length. Fig. 3 shows the t-SNE representations of these se-
quences. From Fig. 3a, it is indeed apparent that the sequence
length dependency has been greatly reduced by considering
sequences of approximately same length. Moreover, the t-
SNE representation now shows two separate clusters, which
correspond to the ground truth labels (Fig. 2b).

Running k-means on only the sequences with similar
lengths resulted in much improved predictions (Fig. 3c),
which was expected, due to the reduced influence of the
sequence lengths. The RDDC predictions on the other hand,
were obtained from the model trained on the full dataset. This
further indicates that, for these sequences, RDDC trained on
the full model has learned to separate the "Yes" and "No"
recordings.

4. CONCLUSION
In this paper, we addressed the task of time series cluster-

ing. Our model uses a recurrent neural network as a feature
extractor and a divergence-based clustering loss function in
order to find underlying structure as well as optimize the fea-
ture extraction. Our approach is able to effectively cluster time
series of different length and multivariate data with complex
temporal dependencies, outperforming previous approaches
that do not exploit the temporal dependencies in the data.
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