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ABSTRACT
The motivation for this work is to improve the performance of
deep neural networks through the optimization of the individ-
ual activation functions. Since the latter results in an infinite-
dimensional optimization problem, we resolve the ambiguity
by searching for the sparsest and most regular solution in the
sense of Lipschitz. To that end, we first introduce a bound
that relates the properties of the pointwise nonlinearities to
the global Lipschitz constant of the network. By using the
proposed bound as regularizer, we then derive a representer
theorem that shows that the optimum configuration is achiev-
able by a deep spline network. It is a variant of a conven-
tional deep ReLU network where each activation function is
a piecewise-linear spline with adaptive knots. The practical
interest is that the underlying spline activations can be ex-
pressed as linear combinations of ReLU units and optimized
using `1-minimization techniques.

Index Terms— Deep learning, Lipschitz regularity,
learned activations, deep spline, representer theorem.

1. INTRODUCTION

Supervised learning is often formulated as a data-fitting prob-
lem (a.k.a. regression). There, the goal is to estimate a map
f : Rd → R from a set of (possibly inaccurate) samples
ym ≈ f(xm),m = 1, . . . ,M [1]. Researchers have ex-
ploited the connection with splines and regularization theory
to justify the use of kernel estimators; in particular, radial ba-
sis functions [2, 3, 4]. In the reproducing kernel Hilbert space
(RKHS) framework, the learning problem is formulated via
the minimization

min
f∈H

M∑
m=1

E (ym, f(xm)) + λ‖f‖2H, (1)

where E(·, ·) is an arbitrary error function andH is an RKHS
with the corresponding reproducing kernel k : Rd×Rd → R.
Remarkably, it can be shown (see [5]) that the solution of (1)
can always be expressed as the kernel expansion

f(x) =

M∑
m=1

amk(x,xm) (2)
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which then yields a discretization scheme for determining the
optimal coefficients a1, a2, . . . , aM .

The classical RKHS formulation is elegant but suffers
from one major drawback: It requires as many basis functions
as there are data samples. This is the reason why researchers
have developed schemes to reduce the number of active ker-
nels, for example by using a sparsity-enforcing loss function
such as the ε-insensitive norm in the SVM regression [6, 7]
or by replacing the quadratic regularization supported by the
theory of RKHS by a sparsity-enforcing penalty such as the
`1-norm, which results in the generalized LASSO [8].

While kernel methods used to be a major player in ma-
chine learning since the mid ’90s, they have been recently
outperformed by deep neural networks in many real-world
applications such as image classification [9] and segmenta-
tion [10]. The leading idea of deep learning is to build power-
ful architectures via the repeated composition of elementary
blocks that consist of a linear transformation (with learnable
weights) followed by a layer of (fixed) pointwise nonlinear-
ities (neuron activations) [11, 12]. While practitioners have
considered a variety of activation functions, such as the sig-
moid, a preferred choice that has emerged over the years is
the rectified linear unit ReLU(x) = x+

M
= max(x, 0) [13].

Deep networks with ReLUs perform remarkably well and
are typically easy to train [11]. Moreover, they implement a
global input-output relation that is continuous and piecewise-
linear [14]. This property is due to the ReLU itself being a
linear spline, which has prompted Poggio et al. to interpret
deep neural networks as hierarchical splines [15]. Recently,
Unser was able to establish theoretically the optimality of lin-
ear spline activations in the sense that they satisfy the mini-
mization of a second-order total-variation criterion [16].

Lipschitz continuity is a desirable property of a deep neu-
ral network. It has been assumed in various analyses of deep
learning, for example in the analysis of Wasserstein GAN’s
[17]; the convergence of CNN-based projection algorithms in
inverse problems [18] and in the analysis of the generalization
property of deep neural networks [19].

In this paper, we propose a new variational framework for
deep neural networks with the motivation of controlling the
Lipschitz regularity of the whole network. To do so, we pro-
pose a new regularization that gives a bound on the Lipschitz
constant. We then derive a representer theorem for this prob-
lem, showing that the optimal solution takes the form of a
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deep spline network where each activation is a linear combi-
nation of ReLU units plus a linear term.

2. MATHEMATICAL DESCRIPTION

2.1. Notations and Definitions

First, we recall some relevant mathematical definitions.
C0(R) is the Banach space of continuous functions that van-
ish at infinity, equipped with the supremum norm ‖f‖∞

M
=

supx∈R f(x). The topological dual of C0(R), denoted by
M(R), is the space of Radon measures over R equipped with
theM-norm (the total-variation norm in the sense of measure
theory)

‖w‖M
M
= sup
ϕ∈C0(R)

〈w,ϕ〉
‖ϕ‖∞

. (3)

The space M(R) is an extension of L1(R), since L1(R) ⊆
M(R) and, for any f ∈ L1(R), ‖f‖L1 = ‖f‖M. However,
M(R) contains the shifted Dirac distributions δ(· − x) with
‖δ(· − x)‖M = 1, which shows that it is larger than L1(R).

Generally, a function f : X → Y (X and Y are normed
spaces with their corresponding norms denoted by ‖ · ‖X , ‖ ·
‖Y , respectively) is Lipschitz if, for all x1, x2 ∈ X , there
exists a constant C such that

‖f(x1)− f(x2)‖Y ≤ C‖x1 − x2‖X . (4)

Classical supervised-learning algorithms are tied to spe-
cific classes of parametric vector-valued functions f : RN →
RN ′ , which may also serve as elementary modules of more
advanced architectures. A deep feedforward network results
from the sequential composition of L such units under the
implicit assumption that the domain and range of consecutive
operators are compatible. The primary transformations are (i)
linear maps with adjustable weights, and (ii) component-wise
nonlinearities. Accordingly, we represent a standard deep
neural network (DNN) as

fdeep : RN0 → RNL : x 7→ fL ◦ · · · ◦ f1(x) (5)

with associated dimensionality/layer descriptor (N0, . . . , NL).
The `th layer f` : RN`−1 → RN` of the network is then de-
scribed by

f`(x) =
(
σ1,`(w

T
1,`x), σ2,`(w

T
2,`x), . . . , σN`,`(w

T
N`,`

x)
)
,

(6)
where wn,` ∈ RN`−1 encodes the linear weights and σn,` :
R → R denotes the neural activation function associated to
any particular neuron indexed by (n, `). When the network is
fully connected, its training results from the optimization of
a cost function with respect to the linear weights wn,`. The
regularization is achieved via a functional that constrains the
magnitude of the weights, for instance, Rweights(fdeep) =∑L
`=1

∑N`

n=1 ‖wn,`‖22, which is the squared `2-norm of all
linear weights.

2.2. Learning the Activations

The standard paradigm in deep learning is to fix the shape of
the neuronal responses to σn,`(x) = σ(x − bn,`), where σ is
the activation function (e.g., sigmoid or ReLU), common to
all neurons, and bn,` an adjustable bias.

Our proposal is to allow σn,` to vary on a neuron-
by-neuron basis and to optimize the shape of the acti-
vations during the training process, under the constraint
that the linear weights are normalized. In the original
work of [16], the training of the activation functions has
been formulated by introducing an additional regularization
term Rneurons(fdeep) =

∑L
`=1

∑N`

n=1 TV
(2)(σn,`), where

TV(2)(·) is the second-order total-variation

TV(2)(σ) = ‖D2σ‖M (7)

and D is the derivative operator. Unser’s representer theorem
then states that the optimal solution is achieved with a deep
spline network; that is, a network whose individual activation
functions are adaptive and piecewise-linear.

While the above optimality result is a good starting point,
it is not entirely suitable for our purpose because the second-
order total-variation is only a semi-norm. The reason for this
is that the null space of the second-order derivative D2 is non-
trivial, since it is composed of all polynomials of the form
b1 + b2x. Our proposal here is to add an additional term to
obtain a bona fide norm. This leads us to define the BV(2)-
norm as

‖f‖BV(2)
M
= TV(2)(f) + |f(0)|+ |f(1)− f(0)|. (8)

The corresponding Banach space is

BV(2)(R) = {f : R→ R : ‖f‖BV(2) <∞}. (9)

A fundamental property of BV(2)(R) is stated in Proposi-
tion 1. It is a special case of [20, Theorem 5] with L = D2.

Proposition 1. For any function f ∈ BV(2)(R), there exist a
unique w = D2f ∈M(R), b1 = f(0), b2 = (f(1)−f(0)) ∈
R such that

f(x) =

∫
R
h(x, y)w(y)dy + b1 + b2x, (10)

where h(·, ·) is given as

h(x, y) = (x− y)+ − (1− x)(−y)+ − x(1− y)+. (11)

The BV(2)-norm of f then simplifies to

‖f‖BV(2) = ‖w‖M + |b1|+ |b2|. (12)

In this paper, we propose to learn the activation functions
by constraining their BV(2)-norm. To avoid the propagation
of scaling from one layer to the next, we also impose a scaling
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constraint on the linear weights. Specifically, we assume that
the sup norm of the weight vectors wn,` is normalized; i.e.,
‖wn,`‖∞ = 1 for all neurons. Note that all the analysis in this
paper remains valid for other norms as well since all norms
are equivalent for a finite-dimensional space.

The global Lipschitz continuity of the neural network
can only be ensured if each of its each individual neurons is
Lipschitz-continuous over R. Lemma 1 reveals the tight con-
nection between the BV(2)-norm and the Lipschitz property
at the elementary level of a scalar nonlinearity.

Lemma 1. Any function σ ∈ BV(2)(R) is Lipschitz-continuous
with constant C = ‖σ‖BV(2) . Indeed, for any x, y ∈ R, we
have

|σ(x)− σ(y)| ≤ ‖σ‖BV(2) |x− y|. (13)

Proof. The first step is to show that, for any x1, x2 ∈ R,

sup
y∈R
|h(x1, y)− h(x2, y)| ≤ |x1 − x2|. (14)

Hence,

|f(x1)− f(x2)| ≤
∣∣∣∣∫

R
h(x1, y)w(y)dy −

∫
R
h(x2, y)w(y)dy

∣∣∣∣
+ |b2||x1 − x2|

≤
∫
R
|h(x1, y)− h(x1, y)||w(y)|dy

+ |b2||x1 − x2|
≤ |x1 − x2|‖w‖M + |b2||x1 − x2|
≤ ‖f‖BV(2) |x1 − x2|.

This Lipschitz-continuity property implies that the mem-
bers of BV(2)(R) are continuous on R and differentiable al-
most everywhere. This is a minimal requirement for the ac-
tivation functions of a neural network in order to be able to
deploy the back-propagation algorithm in the training step.

3. LIPCHITZ BOUND FOR DEEP NEURAL
NETWORKS

We now provide a global Lipschitz bound for the whole net-
work that involves the BV(2)-norm of each neuron.

Theorem 1 (Lipschitz regularity of deep neural networks).
Any feed-forward fully-connected deep neural network with
the nonlinearity selected from the space BV(2)(R) and nor-
malized linear weights (with respect to the `∞-norm) speci-
fies an input-output relation that is Lipschitz with respect to
the `1-norm with constant

C =

L∏
`=1

(
N∑̀
n=1

‖σn,`‖BV(2)

)
. (15)

In other words, for all x,y ∈ RN0 , we have

‖fdeep(y)− fdeep(x)‖1 ≤ C‖y − x‖1. (16)

Proof. Due to Lemma 1, we have∣∣σn,`(wT
n,`y)− σn,`(wT

n,`x)
∣∣ ≤ ‖σn,`‖BV(2)

∣∣wT
n,`(y − x)

∣∣
≤ ‖σn,`‖BV(2)‖wn,`‖∞ ‖y − x‖1
= ‖σn,`‖BV(2)‖y − x‖1,

where the last step follows from the Hölder inequality. This
yields a Lipschitz bound for the `th layer of the network, as

‖f`(y)− f`(x)‖1 ≤

(
N∑̀
n=1

‖σn,`‖BV(2)

)
‖y − x‖1.

Now, by composing the layer inequalities, we obtain the an-
nounced Lipschitz bound.

Remark 1. We can replace the `1-norm in (16) by any norm
due to the norm-equivalence property of finite-dimensional
vector spaces.

Due to (15), the per-layer optimization of
∑N`

n=1 BV(σn,`)
contributes to a decrease of the overall Lipchitz constant of
the network. This is our main motivation for including such
terms in the regularization functional.

4. DEEP-SPLINE REPRESENTER THEOREM

Let us now get back to our initial problem: the determination
of the optimal set of parameters in (6)— the linear weight
vectors wn,` and the best shape of activation functions σn,` :
R→ R—during the training of the neural network. Our strat-
egy is to augment the usual cost functional by adding a new
regularization term that controls the overall Lipchitz regular-
ity of the neural network. To that end, we define our training
problem as

min
‖wn,`‖∞=1

σn,`∈BV(2)(R)

M∑
m=1

E
(
ym, f(xm)

)
+ µ

L∑
`=1

N∑̀
n=1

R`(wn,`)

+ λ

L∑
`=1,

(
N∑̀
n=1

‖σn,`‖BV(2)

)
, (17)

where E : RNL × RNL → R≥0 is an arbitrary error function
such that E(y,y) = 0 for any y ∈ RNL , R` : RN`−1 → R≥0
is some arbitrary cost that favors certain types of linear trans-
formations, and λ, µ ∈ R>0 are two adjustable regularization
parameters.

3244



Theorem 2 ( BV(2) optimality of deep splines). If the solu-
tion of (17) exists, then it is achieved by a deep spline network
with individual activations of the form

σn,`(x) = b1,n,` + b2,n,`x+

Kn,`∑
k=1

ak,n,`ReLU(x− τk,n,`),

(18)

with adaptive parameters Kn,` ≤ M , τ1,n,`, . . . , τKn,`,n,` ∈
R, and b1,n,`, b2,n,`, a1,n,`, . . . , aKn,`,n,` ∈ R.

Proof. Consider an arbitrary solution of (17) with linear
weights denoted by w0

n,` and the non-linearities σ0
n,` for

` = 1, 2, . . . , L and n = 1, 2, . . . , N`. We denote sm,n,` and
zm,n,` as the input and output of the neuron (n, `) respec-
tively for the input vector xm = (xm,1, xm,2, . . . , xm,N0).
More precisely, we set zm,n,0 = xm,n and, then, for ` =
1, 2, . . . , L, we inductively define zm,`−1, sm,n,`, and zm,n,`
as

zm,`−1 = (zm,1,`−1, zm,2,`−1, . . . , zm,N`−1,`−1),

sm,n,` = w0
n,`

T
zm,`−1,

zm,n,` = σ0
n,`(sm,n,`).

Now, we define the auxiliary interpolation problem

min
σ∈BV(2)(R)

TV(2)(σ) s.t. (19){
σ(sm,n,`) = zm,n,`, m = 1, 2, . . . ,M,

σ(x) = σ0
n,`(x), x ∈ {0, 1}.

(20)

for the neuron (n, `) of the network.
First, we show that σ0

n,` is a solution of (19). Assume by
contradiction that there exists an activation function σ̃n,` ∈
BV(2)(R) with TV(2)(σ̃n,`) < TV(2)(σn,`) that satisfies the
feasibility conditions (20). It then follows from the feasi-
bility conditions σ̃(x) = σ0

n,`(x) for x = 0, 1 and (8) that
‖σ̃‖BV(2)(R) < ‖σ0

n,`‖BV(2)(R). Now, by replacing σ0
n,` by

σ̃n,` in the neuron (n, `), we obtain a new network that has a
lesser cost (17) since, except for the BV(2)-norm of the neu-
ron (n, `), which has been decreased, all the other terms of
the cost function remains unchanged. Having a new network
with a lesser cost contradicts the optimality of the original
network.

Now, since (19) has a solution, it fulfills the conditions
of Lemma 1 of [16] which states that there always exists a
solution of (19) that is a linear spline of the form

σspline(x) = b1 + b2x+

K∑
k=1

akReLU(x− τk) (21)

with K ≤ M knots, as it has M + 2 constraints. This yields
the solution form (18) for the neuron (n, `). By repeating this
procedure for all neurons, we obtain the optimal form of all
the activations as desired.

The main outcome of our new theorem is that the optimal
architecture is a deep spline network where the action of each
individual neuron is encoded by a linear spline. The non-
trivial part is that these splines are adaptive, meaning that the
number of knots Kn,` associated to each neuron (n, `), as
well as their location τk,n,`, is unknown a priori.

The elegant and encouraging aspect of the solution form
(18) is that the standard ReLU architecture is included as a
particular (and minimalistic) case with Kn,` = 1. However,
Theorem 2 also calls for a novel optimization challenge: the
optimal allocation and determination of the spline knots.

Due to D2{ReLU(· − τk)} = δ(· − τk), we have

‖σspline‖BV(2) =

K∑
k=1

|ak|+ |b1|+ |b2| = ‖a‖1 + ‖b‖1,

which connects our framework with `1-minimization tech-
niques. In addition, we have σspline ∈ BV(2)(R) ⇔ ‖a‖1 +
‖b‖1 <∞.

We also note that the present solution is very similar to
the one reported in [16] for TV(2) regularization. The funda-
mental difference is the inclusion of the coefficients b1,n,` and
b2,n,` in the regularization, which is essential for controlling
the Lipchitz regularity of the network. Otherwise, there is the
risk of having the Lipchitz constant grow without bounds be-
cause of a lack of penalty on the linear part of the solution;
i.e., the term b1,n,` + b2,n,`x, which is present in both sce-
narios. Mathematically, the price to pay for switching from
TV(2) to BV(2) is a slight loss in the sharpness of the sparsity
bound: Kn,` ≤M , as opposed to Kn,` ≤ (M − 2) in [16].

5. CONCLUSION

In this paper, we have proposed a variational framework for
optimizing the activation functions of deep neural networks.
The main motivation is to learn activations that are smooth
and “sparse”, while controlling their Lipschitz regularity. We
have proposed the BV(2)-norm as a suitable candidate. It
gives an upper bound to the Lipschitz constant of the global
network. We have proved that the solution of this variational
problem is a deep spline network that has piecewise linear
activation functions. They can be expressed as a linear com-
bination of ReLU functions with a linear additive term. The
BV(2)-norm also enforces `1 regularization on the expansion
coefficients, which supports the idea of imposing sparsity in
the network. The next step of our research is to design practi-
cal algorithms that optimally allocate and determine the spline
knots and to investigate the potential performance gain of
such architectures.
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