
DIRECT ESTIMATION OF WEIGHTS AND EFFICIENT TRAINING OF DEEP NEURAL
NETWORKS WITHOUT SGD

Nima Dehmamy�, Neda Rohani��, Aggelos K Katsaggelos��

� CCNR, Department of Physics, Northeastern University. Boston, MA
�� Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, IL

ABSTRACT

We argue that learning a hierarchy of features in a hierarchical

dataset requires lower layers to approach convergence faster

than layers above them. We show that, if this assumption holds,

we can analytically approximate the outcome of stochastic gra-

dient descent (SGD) for each layer. We find that the weights

should converge to a class-based PCA, with some weights in

every layer dedicated to principal components of each label

class. The class-based PCA allows us to train layers directly,

without SGD, often leading to a dramatic decrease in training

complexity. We demonstrate the effectiveness of this by using

our results to replace one and two convolutional layers in net-

works trained on MNIST, CIFAR10 and CIFAR100 datasets,

showing that our method achieves performance superior or

comparable to similar architectures trained using SGD.

1. INTRODUCTION

Deep neural networks (DNN) are useful for tasks which can

be broken down into a hierarchy of smaller tasks, sometimes

requiring exponentially fewer parameters than their shallow

counterparts [1]. Training DNN is generally done using SGD,

where backpropagation needs to be done sequentially, layer

by layer, and cannot be parallelized. Thus, training deep net-

works via SGD can be slow and avoiding SGD for some layers

could make training DNN more efficient.We show here that,

if a hierarchy of features exists in the data, weights for some

layers may be approximated without SGD. Learning to clas-

sify natural scenes becomes more efficient if they are broken

down into low and high-level features [2]. For example faces

become easier to classify if the system starts by learning line

and curve segments, combining them to make eyes, nose and

mouth shapes, and so on. The key point here is that, learning

low-level features (e.g., eye shape) should not require knowl-

edge of high-level features (e.g., face composition) at the same

time. Therefore, there must exist a way to setup the train-

ing dynamics of DNNs such that learning low-level features

occurs earlier than high-level features. Since lower layers

(closer to input) in a DNN seem to learn low-level features

[3], this must mean that lower layers converge more rapidly

than higher layers. Fig. 1 shows three examples from MNIST,

CIFAR10, and CIFAR100 datasets. The networks trained on

these datasets consist of input layer, four dense layers with the

same number of hidden units and an ouput classification layer.

As can be observed in Fig. 1, in all three networks at early

stages, the convergence rate of most lower layers is higher. In

terms of the learning dynamics, this means that the dynamics

of weights of higher layers play little role in training of lower

layers. If this effective “decoupling” of learning dynamics

of layers occurs, SGD should be able to train the network in

a hierarchical fashion, starting from low-level features. This

decoupling greatly simplifies the SGD equations, allowing

us to estimate the outcome of the training. Thus, the central

question that arises is: What low and high-level features are

learned when this decoupling occurs? Examining the SGD

equations near convergence we find that this approximate de-

coupling of layer dynamics would allow us to estimate the

outcome of SGD analytically. The final result takes a very

simple form, namely that a class-based PCA should be a good

approximation of optimal weights, at least for lower layers.

2. SGD NEAR CONVERGENCE

We consider the classification of N inputs X = (x1, ..., xN )
into C classes by N label vectors Y = (y1, ..., yN ) using an

n layer neural network. The dimension of the output of layer

k is d(k). The output of layer k is

h(k) = f
(
h̃(k)

)
, h̃(k) = w(k)Th(k−1) + b(k) (1)

where f(·) is the activation function, h̃(k) is the “raw output”,

and w(k) and b(k) are the weights and biases of layer k, re-

spectively. h
(0)
i = xi is the ith input and h

(n)
i is the output of

the network. The last layer is the classification layer with a

softmax activation and categorical cross-entropy cost function

g(h(n), y). The SGD equations are

δb(k)

δN
= −ε

δg

δb(k)
= −ε

(
∂g

∂h̃(n)

)T

A(k+1)T , (2)

δw(k)

δN
= −ε

δg

δw(k)T
= −εh(k−1) δg

δb(k)
, (3)
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where N is the number of data points processed, δN is the size

of the mini-batch processed in each step, δw ≡ w(N + δN)−
w(N), and ε is the learning rate, which can be dynamically

adjusted. The matrix A(k+1) follows from backpropagation

(Fig. 2 top left)

A(k) ≡
n−1∏
m=k

(
∂h̃(m+1)

∂h̃(m)

)T

=

n∏
m=k

w̃(m), (4)

w̃(m) ≡ diag

(
f ′

(
h(m−1)

)T
)
w(m). (5)

with diag(f ′) representing a diagonal matrix with the deriva-

tive of the activation function of the hidden layers on the

diagonal.

Fig. 1. Convergence rate λ = ‖w(N+δN)−w(N)‖/‖w(N)‖
of weights w in different layers on 3 datasets (δN = 64 is

the batch size). The de-trended λ is λ/λ− 1, where λ is the

average rate of all layers at a given time step. The solid curves

are moving averages of the actual rates (shown with lower

opacity). All architectures are an input layer, followed by

four fully-connected layers, with the same number of hidden

units (81 for MNIST and 100 for CIFAR10 and CIFAR100),

and an output layer. The plots show the convergence of the

four hidden layers. The convergence rate of lowest layers

is generally higher than that of the upper layers in all three

datasets. This order in convergence rates changes in later

stages of the training.

We assume that the dataset has a clear hierarchy (e.g.,

faces) and that the architecture of the DNN is designed in a

way that it can learn the hierarchy. We are also assuming that

lower layers converge faster and learn lower-level features,

thus allowing higher layers to learn high-level features by

combining learned low-level features. We will now focus on

a stage of the training during which layer k is approaching

a local minimum, whereas higher layers m > k are still far

from convergence. Since layer k is near a local minimum,

the gradients δg/δb(k) and δg/δw(k) become small. Thus,

from (3),
∥∥∥∂g/∂h̃(n)

∥∥∥ must be small, fluctuating stochastically

around the local minimum. However, note that, while the

gradients are small near a local minimum, to ensure lower

layers converge faster we expect the rate of convergence, λ =
‖δw‖/‖w‖, to be larger for lower layers k compared to higher

Fig. 2. Top, Left: Schematic of the operator A(k) appearing

in backpropagation (2)–(3), capturing the effect layers k and

above. Note that A
(k)
i contains the derivative of the activa-

tion of all layers above k − 1. top right: A
(k)
i appears as

K
(k)
i = A(k)yiy

TA(k)T in the weight SGD equations. The

operator K
(k)
c is the average of K

(k)
i over all inputs of the

same class c. Bottom: Distribution of δρ/δN on MNIST

showing Var[ δρδN ] ∝ ρ2

N2 . The fluctuations in the eigenvalues

δλμ/δN of the covariance matrix takes a random Gaussian

distribution with zero mean and constant variance over added

samples N when scaled by N/λ (inset). Averaging this dis-

tribution over all eigenvalues confirms that they all have the

same λ2/N2 variance pattern.

layers m > k in this stage (Fig. 1). We may expand the

gradient in a Taylor series to get

∂g

∂h̃
(n)
i

≈ Pi

N

(
h̃
(n)
i − ỹi

)
, ỹi ≡ log (yiZi) , (6)

where Zi =
∑C

a=1 exp[h̃
(n)
ia ] is the softmax partition function1

and Pi ≡ diag (yi) = yiy
T
i is the projection matrix onto the

class of yi. To further simplify (6), we define the “optimal

input” h
(0)

i as the input that would produce exactly the output

vector ỹi

h̃
(n)
i = F [h

(0)
i ], ỹi = F [h

(0)

i ] (7)

where F [·] summarizes forward propagation of the input

through the network. In practice, h
(0)

i can be obtained via

activation maximization [3]. Note that h
(0)

i is not unique

because of the non-convexity of the cost function, as well as

weights matrices not being full-rank. Let h
(k)

i denote the raw

output of layer k after propagating h
(0)

i through the network.

1We can replace the zeros in yi with a small positive ε ∼ 1/Zi to make

ỹi well-defined.
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We can always find h
(0)

i such that the activation patterns

of h
(k)

i and h̃
(k)
i are similar (i.e. f ′

(
h
(k)

i

)
∼ f ′

(
h̃
(k)
i

)
,

meaning that h
(k)

i uses features similar to h̃
(k)
i in each layer).

This ensures that A(k) will be the same for h
(k)

i and h̃
(k)
i

2.

Defining Δh
(k)
i ≡ diag

(
f ′

(
h̃
(k)
i

))(
h̃
(k)
i − h

(k)

i

)
, we can

rewrite (6) and substitute in (3) to get

δg

δw(k)T
≈ 1

N

N∑
i=1

h
(k−1)
i Δh

(k−1)
i

T
w(k)K

(k+1)
i , (8)

K
(k)
i ≡ A(k)yiy

T
i A

(k)T , (9)

where bias-dependent terms exactly cancel. K
(k)
i has a struc-

ture similar to an auto-encoder restricted to class of yi. When

a DNN learns to classify a dataset it finds high-level features

that are characteristic of each class. Many inputs for the same

class will share many or some of these high-level features,

which translates to the activation pattern f ′
(
h̃
(k)
i

)
in (5) be-

ing highly correlated for all i belonging to the same class c.
This assumption allows us to group inputs for each class c and

write (8) as (see [4] for details)

δw(k)

δN
≈ −ε

2

C∑
c=1

δρ
(k−1)
c

δN
w(k)K(k+1)

c , (10)

ρ(k)c (N) ≡ 1

N

∑
i∈c

h
(k)
i h

(k)
i

T
(11)

where K
(k+1)
c is the mean of K

(k+1)
i for all i in class c (Fig. 2

Top Right) and we have defined the “density matrix”3 ρ
(k)
c for

each class c. It can be shown, and directly verified from data

(Fig. 2 bottom; see [4]), that the fluctuations of the density

(and covariance) matrix near convergence follow a multivariate

Gaussian

δρ
(k)
c

δN
= N (0, 1)

2√
δN

ρ(k)c /N (12)

with N (0, 1) being a standard normal distribution with mean

zero and unit standard deviation. Eq. (10) is still hard to

solve because w(k) is sandwiched between two other matrices.

The presence of K
(k+1)
c is generally what makes SGD highly

nonlinear, coupling weights of multiple layers. However,

notice that before layers m > k converge K
(k)
c /‖K(k)

c ‖ is ap-

proximately a projection matrix4 onto class c. Thus, we can de-

fine “class-restricted weights,” w
(k)
c ≡ w(k)K

(k+1)
c /‖K(k)

c ‖
satisfying w

(k)
c′ w

(k)
c

−1 ≈ δcc′I , with w
(k)
c

−1
being a pseudo-

inverse, found using SVD. We use this to rewrite δw(k)/δN

2This is a reasonable assumption as we are close to convergence and we

can always find an h
(k)
i which is close enough to h̃

(k)
i so that this is satisfied.

3When h
(k)
i are mean zero, the density matrix is just the covariance matrix.

4This is because, when k is still converging, higher layers m > k evolve

much more slowly than layer k, and w(m) are still random matrices.

in terms of w
(k)
c , but since gradients for lower layers are

much larger than higher ones (Fig. 1), we can neglect

δ
(
K

(k+1)
c /‖K(k)

c ‖
)
/δN terms [4]. Multiplying both sides

of (10) by w
(k)
c

−1
and plugging in (12) into (10), for each

class we have a stochastic equation given by

δ logR w
(k)
c

δN
= −ε(N)ρ(k−1)

c (13)

where ε(N) ≡ εN (0,1)

N
√
δN

, is a random Gaussian noise and the

“right logarithm,” is formally defined such that δ logR w
(k)
c =(

δw
(k)
c

)
w

(k)
c

−1
. Similar to a random walk, we can find the

distribution of logR w
(k)
c becomes a multivariate Gaussian dis-

tribution [4] with covariance ρ
(k−1)
c

2
/
〈
ε(N)2

〉
. Thus, w

(k)
c is

more likely to spread along eigenvectors of ρ
(k−1)
c with largest

eigenvalues. This means that the class-restricted weights w
(k)
c

can be found via PCA on h
(k−1)
i for all inputs i in class c. The

full weight matrix w(k) can be found by combining the w
(k)
c

for all classes c, as we elaborate below.

Fig. 3. DMN with one or two layers versus ConvNet: The

dashed horizontal line indicates the performance of a network

consisting of a single fully connected classification layer, show-

ing the baseline performance. The bar plots have layers of

DMN or ConvNet before this classification layer. The struc-

ture of the DMN (blue) and the ConvNet (orange) are the same

with the same number of filter and layers. The y-axis shows

the validation accuracy (percentage) and the x-axis labels show

the number of filter (“4” means a single convolutional layer

with 4 filters; “4,15” means two layers, first with 4 and second

with 15 filters). All experiments have 1 dense classification

layer with softmax activation. Each DMN and ConvNet layer

is ReLU activated and is followed by a 2×2 maxpooling layer.

All filters in DMN and ConvNet have 3× 3 receptive fields. In

all simulations the correlation threshold to remove duplicate

PC was TPC = 0.9. The fraction of training data used for

DMN was Tfrac = 0.3 − 0.5 for MNIST, Tfrac = 0.7 for

CIFAR10, and Tfrac = 1.0 for CIFAR100. Performance
as a function of three DMN parameters: The three hyper-

parameters of the DMN, each showing a nontrivial optimal

value.
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3. TRAINING LAYERS USING CLASS-BASED PCA

Our results state that a subset of weights w
(k)
c is likely to be

along principal components (PC) of h
(k−1)
i for each class c.

Since wK = wSSTK for any orthogonal S, we are free to

choose the basis of the weights for each layer (i.e. the choice of

basis is part of the design of the network architecture). We will

therefore choose distinct rows of w(k) to be w
(k)
c , dedicated to

each class. If two PCs from two different classes are correlated

more than a threshold, TPC , we keep only one of them. Tests

with different TPC (Fig. 3 bottom, left) on MNIST show a

prominent peak near TPC ≈ 80%. Notably, if we do not

drop highly correlated PCs across classes (i.e. TPC → 1)

the performance drops. We suspect that keeping similar PCs

biases the statistics of the data, resulting in worse classification.

We choose b(k) = 0, as they canceled in (8). Thus, we can

construct pretrained neural networks with weights found using

the class-based PCA. We will call such a network a “Density

Matrix Network” (DMN). Since DMN is based on PCA, we

need to choose a threshold 0 < Tv ≤ 1 for how much of

the variance of the data we wish to explain (Fig. 3 bottom,

middle). We choose one Tv for each layer, using the same

Tv for all classes5 Tv determines the number of filters (or

hidden neurons) and the amount of information retained from

the input. We find that there is an optimal Tv yielding the

best performance. Lastly, DMN can be constructed with a

fraction of the training data, since the density (and covariance)

matrix can converge with a small amount of data. The fraction

Tfrac of data used to train a DMN (Fig. 3 bottom, right) is an

important factor in determining training time. For MNIST we

see that for the first layer as low as 30-40% of the training data

yields similar to using all of the data. A reasonable fraction

may be determined prior by checking if the convergence of

ρc. the amount of variance explained by PCA for each class

(Tv, middle) is another parameter, which also shows a peak

around 98% when keeping the other two parameters fixed. As

we see keeping all of the variance does not result in the best

classification accuracy. As we see, all three hyperparameters

of DMN have an intuitive, information-theoretic interpretation.

Thus, there should be a way to estimate the optimal Tv and

TPC based on rate-distortion theory [5] to minimize resource

usage while maximizing discrimination among classes.

3.1. Simulations

DMN can be made with virtually any architecture, includ-

ing convolutional. For the first layer, this is related to the

Karhunen-Loeve transform [6] of images, where one breaks

an image down into blocks and PCA is performed on the block

images. However, in higher layers, since DMN relies on the

covariance matrix of the input, overlapping receptive fields

5Setting Tv = 1 means all eigenvectors of ρ
(k)
c are kept, making DMN a

linear transformation. If no activation function is used after DMN, Tv = 1
yields no improvement to the classification compared to when the layer is

absent On the other hand, very small Tv also decreases the performance.

result in correlated outputs and, hence, unwanted PCs not

arising from covariance of input data [4]. One simple way

to avoid correlated outputs is to use a maxpooling layer right

after a convolutional DMN. The architectures we used for

our experiments consist of one or two convolutional layers

with ReLU activation functions, each followed by a maxpool-

ing layer and ending with a classification layer with softmax

activation function. We compare the performance of convo-

lutional DMN layer with a similar ConvNet [7] trained using

SGD (More experiments with hybrids of DMN and ConvNet,

as well Batch Normalization [8] presented in [4]). In DMN,

we calculate the Conv layer weights and fix the weights, but

we still train the classification layer using SGD. On MNIST

(Fig. 3 top, left) DMN (blue) performs within 1% accuracy

of ConvNet (orange) almost in all tested cases. On CIFAR10

(Fig. 3 top, center), DMNs consistently outperform the Con-

vNets, with a very impressive margin of between 5− 10% in

the two layer setting. On CIFAR100 (Fig. 3 top, right), the

single layer DMN outperforms ConvNet, while in two layers

the performance is equal.

3.2. Time Complexity of DMN vs SGD

The complexity of SGD is due to the matrix products for back-

propagation. Training the first layer as DMN and feeding

the output into SGD layers removes the need to recalculate

the output of the first layer again at every step, and adds a

O
(
d(0)d(1)

)
+ O

(
d(0)

2
)

from the PCA. In most cases, es-

pecially convolutioanl layers, PCA time complexity is much

smaller than recalculating the layer output at every step and

using DMN can reduce the training complexity significantly.

4. CONCLUSION

We showed that a hierarchicy of features in data can result in

a separation time scales in the convergence of various layers.

Lower layers, learning low-level features, will converge at

earlier stages. Focusing on the time scale at which a particular

layer k is converging, while higher layers have not converged,

we found that the layer is likely to converge to a class-based

PCA, with some weights (i.e. units in a dense layer or the

filters in a convolutional layer) learning PCs of each class.

This observations allows us to train networks by performing

PCA on inputs for each class, resulting in a fast and efficient

training at least for lower layers. Using this method, we were

able to produce pretrained convolutional layers for MNIST,

CIFAR10 and CIFAR100 which perform on par or superior to

convolutional layers trained via SGD. The hyperparameters of

this method are related to the variance explained in the PCA

and how informative and discriminative the weights are. Tun-

ing hyperparameters of a specific layer can also be done very

efficiently, as the PCA needs to be performed only once. Other

recent work [9] using information theory has also suggested

that SVD and PCA can be used as universally optimal guesses

for weights in deep neural networks, supporting our results.
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