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ABSTRACT
In this paper, the problem of automatic nonlinear unmixing of
hyperspectral reflectance data using works of art as test cases
is described. We use a deep neural network to decompose a
given spectrum quantitatively to the abundance values of pure
pigments. We show that adding another step to identify the
constituent pigments of a given spectrum leads to more ac-
curate unmixing results. Towards this, we use another deep
neural network to identify pigments first and integrate this in-
formation to different layers of the network used for pigment
unmixing. As a test set, the hyperspectral images of a set of
mock-up paintings consisting of a broad palette of pigment
mixtures, and pure pigment exemplars, were measured. The
results of the algorithm on the mock-up test set are reported
and analyzed.

Index Terms— Hyperspectral imaging, nonlinear unmix-
ing, pigment identification, deep neural network, fusion.

1. INTRODUCTION
Pigment identification and mapping are used by conservation
scientists to elucidate artist/workshop use of materials, to un-
derstand how a painted surface changed over time informing
how an artwork is to be conserved, and, lastly, to identify
anachronistic uses of materials that could be associated with
past restoration. A primary tool for these tasks is hyperspec-
tral imaging reflectance spectroscopy (HSI), a non-invasive
and non-destructive method that has become common place
in cultural heritage [1]. It can be applied in-situ to examine
how pigments are distributed across a painted surface.

One of the primary challenges to use HSI for materials
identification is that the reflectance response of a hetero-
geneous mixture of pigments is a nonlinear function of the
responses of the individual pigments. Pigment identification
refers to qualitatively decomposing a given spectrum to its
pure pigments which can be modeled as a classification prob-
lem. Pigment unmixing refers to quantitatively decomposing
a given spectrum into its basic elements and can be modeled
as a regression problem. This fact has long been understood
and described analytically by Kubelka-Munk (KM) theory
[2]. Using this KM model, reflectance spectra collected from
a painted surface are fitted to dictionaries of pure compounds
[3]. While this approach is computationally straightforward

for pigment identification/quantification, its application is
limited to single-point analyses, rather than every pixel of a
hyperspectral image cube, due to extended memory require-
ments and computation times necessary to undertake these
KM calculations [1].

Deep neural networks (DNNs) have been proven to be
successful in determining the nonlinear mappings between an
input and the corresponding output automatically. In remote
sensing and hyperspectral imaging, different architectures of
neural networks have been used in many applications such as
feature extraction [4, 5], classification [6, 7, 8] and unmixing
[9]. Despite the numerous advantages of DNNs, they have not
been applied widely to cultural heritage and only few works
have utilized such advanced techniques, such as, [10, 11].
Both of these methods use DNNs for pigment identification.
In addition to this, we propose to use a DNN for pigment un-
mixing as well. This network is trained to learn automatically
the nonlinear pigment mixing function using the Kullback-
Leibler divergence loss function and is used for the pigment
unmixing task. This model can be applied to other nonlinear
mixing functions as well, under the condition of having the
training sets being built according to the mixing function.

2. THE PIGMENT UNMIXING PROBLEM
We assume that the painting under investigation I consists of
N pixels and each pixel x is represented by P wavelengths,
i.e., I ∈ RN×P and x ∈ RP . Furthermore, we assume that
the painting is composed of M pure pigments . We refer to
the set of M pure pigments as E. Let x be the hyperspectral
value of a pixel in the image I with an unknown composition.
We are interested in decomposing each pixel’s spectrum as a
function of the set of pure pigments E, according to

x = f(E,α), s.t.
M∑
i=1

αi = 1 and αi ≥ 0, (1)

where the function f can be linear or nonlinear and the vec-
tor α ∈ RM represents the concentration values of the pure
pigments in the representation of the unknown spectrum x. It
has been shown in the literature that the mixing model of the
spectra of pigments is defined by a nonlinear function based
on KM theory [12]. In [13, 11], we use sparse linear and non-
linear KM functions, respectively, to decompose any given
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spectrum into its basic elements. We show that the sparse
unmixing algorithm yields more accurate results than the lin-
ear unmixing algorithm using a fully constrained least square
method [14]. In [11], we first detect the pigments in a given
spectrum using a DNN and then by a using gradient-based
algorithm [15], we estimate the coefficients of the detected
pigments for the given spectrum. Here, we propose to utilize
a DNN to learn the pigment nonlinear mixing function and
find the coefficients of the pigments, α, in a given spectrum.

3. PROPOSED MODEL
As mentioned in section 2, to find the concentration values
of the pigments in any spectrum, a DNN is trained. The
proposed DNN is a feed-forward network, composed of four
fully connected layers with 256, 128, 64 and 32 number of
hidden nodes, with relu/sigmoid nonlinear activation func-
tions (Fig. 1(a)). The softmax nonlinear function is used as
the activation function of the last layer with M = 11 number
of hidden nodes, so that the summing up to one constraint on
the coefficients holds (Eq. 1). The input to the network is
the spectrum vector of a pixel and the output is the estimated
coefficient vector α of pigment concentrations for the given
spectrum.

To obtain a more precise result, we can first identify the
pigments for any unknown spectrum and use this information
to decompose the given spectrum into the concentration val-
ues of the detected pigments. As shown previously in [11]
(the supporting material, section F, table 4), the performance
of the pigment unmixing algorithm improves when prior de-
termination of expected pigments is used. To identify the pig-
ments for a given spectrum, we use a deep feed-forward net-
work [11]. Pigment identification can be modeled as a multi-
label classification [16] problem. Here, each spectrum can
have multiple binary labels due to the presence of multiple
pigments in it. The input to the network is the spectrum and
the output is a vector of zeros and ones, y ∈ {0, 1}M . In
this network, in the last dense layer, the sigmoid nonlinear
activation function is used and the objective loss function of
the network is a binary cross-entropy based loss. The details
of the network are given in [11] which is very similar to the
network in Fig. 1 (a) (the same number of layers and hidden
nodes in each layer with different output).

The detected labels, y, can be used as an extra input to
the network, an “auxiliary input” in Fig. 1 (a) and can be
merged with different layers of the network as shown in Figs.
1 (b), (c) and (d). In Fig. 1(b), Early fusion the labels (a
vector of M = 11 zeros and ones) are concatenated to the
spectrum input (of dimension 56) in the first layer resulting
in an input with a dimension of 67 where the first 56 terms
represent the spectrum and the last 11 terms the labels. In
Fig. 1 (c), Intermediate fusion the labels are concatenated to
the output of the third layer. Lastly, in Fig. 1 (d), Late fusion
the output of the fifth layer is multiplied by the labels. Finally,
another dense layer with M = 11 hidden nodes is added to

the network in Fig.1 (d) to estimate the concentration values.
It has been verified by our experiments that the performance
of the network enhances when the labels are integrated into
the outputs of the higher layers of the network (Fig. 2).

For training the networks proposed for pigment unmix-
ing, we can use the Mean Squared Error (MSE), the cosine
error or the Kullback-Leibler Divergence (KLD) as the loss
function. Due to constraint on the coefficient values to sum
up to one (Eq. 1), we consider the true and predicted coeffi-
cient values of the pigments as belonging to two probability
distributions. Therefore, KLD would be an appropriate loss
function for comparing the similarity of these two probabil-
ity distributions. Based on our simulations, we have observed
that the KLD loss function leads to a better performance than
the MSE or the cosine loss functions. The KLD based loss
function is defined as follows:

L = −
N∑

n=1

M∑
i=1

αn
i log(

α̂n
i

αn
i

) (2)

where α̂n
i and αn

i are the predicted and true coefficient values
of pigment i for training sample n, respectively. N and M
again are the total numbers of the training samples and num-
ber of pure pigments, respectively. We use the Adam [17]
optimizer with default configuration parameter values to op-
timize the objective loss function.

For all our deep learning implementations, we use Python
utilizing the Keras library [18] with Tensorflow [19] as the
backend. The number of epochs and the batch size are set
to 200 and 64, respectively. To avoid overfitting, an Early
Stopping callback is used and the number of patience is set to
10.

4. DATA SETS
In this section, the training (simulated) and test (mock-up)
sets used in the experiments are described.

Mock-up Dataset: We have prepared a set of mock-up
paintings composed of 11 pure colors and 41 mixtures. The
average spectra of 11 pure pigments in the reflectance space
are shown in Fig. 1 (e) top and the visible figure of five exem-
plar mock-up mixtures is provided in Fig. 1 (e) bottom. There
are 30 mixtures of two colors composed of white pigment
and a non-white pure pigment where three different propor-
tions of white pigment (20%, 50% and 70%) have been used.
There are 4 mixtures that are composed of two non-white col-
ors with same proportions ( 12 of each color). The remaining
7 mixtures are composed of three colors with the same pro-
portions ( 13 of each color). However, since no sophisticated
unmixing and layering equipment were used, it is impossi-
ble to guarantee that in every position in the mock-up square
the same concentration of a specific color is used. Unfortu-
nately, the assumption of specific proportions of the colors
represents the ground truth information we will be using. We
build our hyperspectral image, which will be used as the test
set, by concatenating 11 pure pigments and 41 mixtures in a
rectangle.

3218



(a) (b) (c) (d) (e)

Fig. 1. Architectures of proposed networks (a) baseline network with the spectrum as the input, (b) a network with the spectrum
and labels concatenated in the input layer (Early fusion), (c) a network with the spectrum as the input to the first layer and labels
concatenated to the output of the third layer (Intermediate fusion), (d) a network with the spectrum as the input to the first layer
and the output of the fifth layer multiplied by labels (Late fusion), (e) Top: Reflectance spectra of 11 colors used in dataset.
Bottom: Visible picture of exemplar mock-up mixtures. The mixtures are : 1) Minium + Lead White 2) Madder Lake + Lead
White 3) Jaoriste + Lead White 4) Red Ochre + Yellow Ochre and 5) Red Ochre + Yellow Ochre + Egyptian Blue

Simulated data: To train the network so that the mixing
function is learned we need a dataset with known concentra-
tion values. Since for any experimental and real dataset, ac-
quiring exact quantitative information is not possible as men-
tioned earlier, we resort to simulated data. A nonlinear KM
mixing function [2, 12, 20] is used to generate simulated data.
We use the 11 pure pigments in our set of mock-up paintings
to build the mixtures. We consider mixtures of two or three
colors and build all possible mixtures of two/three pure pig-
ments. For each mixture, 500 random combinations of coef-
ficients/concentration values summing up to one are selected
and the KM function [12] is used to model random nonlin-
ear mixtures (refer to Eq. 1 and replace mixing function with
the KM nonlinear function, as shown in Eq. 2 in the support-
ing material of [11], section B). This dataset is used to train
networks for the pigment identification and unmixing tasks.

Pre-processing: Our captured spectra consist of 240
bands with 2nm resolution from 383 to 893 nm. We remove
the noisy channels and to reduce the noise in the signal fur-
ther, a spectrally moving average filter is used and the number
of channels is decreased by a factor of 4 leading to a smoother
signal with 56 bands. Also, all pixel values are normalized
by the reflectance scale factor of the hyperspectral camera
(4095).

5. RESULTS AND DISCUSSION
As mentioned in section 4, we use the simulated data as
our training dataset to find the optimal hyperparameters of

the deep neural networks and mapping function between the
spectrum and coefficient values. The set of mock-up paintings
is used as the test sets here.

Pigment identification: As mentioned before to detect
the constituent pigments in any given spectrum, a multi-label
classifier [16] using a DNN is used where each unknown
spectrum can have multiple labels. Here, we train 11 binary
classifiers and each i-th classifier predicts if the i-th pure pig-
ment is present in the given spectrum or not. The accuracy of
the trained classifier on the mock-up test painting is 98.4%.

Nonlinear unmixing: The network learns the mixing
function of the pigments using the training set from the simu-
lated data. Due to the space limitation, the average predicted
coefficients by different network architectures (Fig. 1 (a)-
(d)) for five exemplar mixtures from the mock-up (Fig. 1
(e) bottom) are given in Fig. 2. The studied mixtures are:
Minium + Lead White (50%, 50%), Madder Lake + Lead
White (80%, 20%), Jaoriste + Lead White (30%, 70%), Red
Ochre + Yellow Ochre (50%, 50%) and Red Ochre + Yellow
Ochre + Egyptian Blue (≈ 33%, 33%, 33%). In Fig. 2, each
bar refers to a mixture, for which the dark blue, light blue
and green show the average estimated coefficient values of
the first, second, third (if present in the mixtures) pigments
in the mixtures. In Fig. 2 yellow refers to the average es-
timated coefficient values of other pigments (not present in
the mixture) that the model has predicted wrongly. In Fig.
2 (a), we observe that architecture (a) which does not use
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(a) (b)

(c) (d)

(e) (f)

Fig. 2. Average estimated coefficient values by different net-
works in Fig. 1 (a) network architecture 1(a), (b) network
architecture 1(b), (c) network architecture 1(c), (d) network
architecture 1(d), (e) linear unmixing algorithm (Eq. 3), (f)
linear unmixing algorithm using labels (applied to the subset
of the spectra of the present pigments in any given spectrum).

the information of the labels has the worst performance and
describes the mixtures by other pigments than the real con-
stituent pigments (large yellow proportions in mixtures 2, 4
and 5). The predicted coefficients for mixtures 1 and 3 are
fairly good. In Fig. 2 (b), we observe that the performance
of the architecture (b) is better than architecture (a) and does
not pick wrong pigments. However, the predicted coefficients
for mixtures 2, 3 and 4 are still far from the expected values.
The estimated coefficients of architecture (c) (Fig. 2 (c))
are closer to the expected values especially for mixtures 2,
4 and 5 compared to the architecture (b) and it seems that
the network is learning the unmixing function better than the
architectures (a) and (b). The best results is related to the
last network (Fig. 2 (d)), where the labels are integrated into
network in a higher layer. The estimated coefficients for two
colors in mixtures 1 and 4 are close to 50 as expected. In
mixture 2, the proportion of pigment 1 is close to 80 and in
mixture 3 its proportion is close to 30 as expected. In mixture

5, the coefficients of three colors are similar. It seems that
the mixtures with white pigment are easier for the network to
decompose. On the other hand, the mixture with three non-
white pigments seems to be the most challenging. This may
be due to the fact that the nonlinear KM mixing function used
in building the non-white mixtures may not be as accurate as
for the mixtures with white pigments in our settings.

For the comparison with the algorithms used for pigment
unmixing, we also studied the performance of linear unmix-
ing algorithm using a fully constrained least square method
according to

x = αE, s.t.
M∑
i=1

αi = 1 and αi ≥ 0, (3)

In Fig. 2 (e), we did not use the labels information and decom-
posed the given spectrum to a linear combination of spectra of
allM = 11 pure pigments (Eq. 3). Similar to the architecture
(a) (Fig. 1 (a)), the linear unmixing algorithm’s performance
in detecting the correct pigments is poor and we observe that
there are large yellow portions in mixtures 2, 3, 4 and 5. In
Fig. 2 (f), we used the labels information and decomposed
the given spectrum to a linear combination of the spectra of
a subset of E containing only the present pigments in a given
spectrum. As can be seen from Fig. 2 (f), the linear unmixing
performance is improved compared to Fig. 2 (e). However, it
is much worse than architectures (c) and (d) and the estimated
coefficients for all mixtures are still far from the expected val-
ues. As was expected, based on the results shown in Fig. 2,
we observe that DNNs model the mixing function more accu-
rately and yield better results than linear unmixing algorithm.

6. CONCLUSIONS
In this paper, we studied the automatic pigment identifica-
tion/unmixing in hyperspectral paintings. Using deep neu-
ral networks and a supervised multi-label classification ap-
proach, the pigments present in any given spectrum are found.
Using another deep neural network, the concentrations of the
pigments are approximated. We studied a set of mock-up
paintings and showed that the DNNs identify the pigments
for any given spectrum with high accuracy. We integrated
the label information to different layers of the network and
showed that the pigment unmixing performance of the net-
works is better when late fusion is used and the estimated co-
efficient values are closer to what is expected. The next step of
this research is to apply the improved version of the nonlinear
unmixing algorithm to analyze the data acquired on historical
objects. We will focus on fusion techniques to integrate the
hyperspectral and XRF images to improve the techniques for
pigment identification and unmixing problems.
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