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ABSTRACT

Sparse and low-rank decomposition, also known as robust principle
component analysis, has been applied successfully in numerous ap-
plications. Typically, this approach leads to a minimization problem
which is solved using iterative algorithms. Drawing inspiration from
recurrent networks, in recent years deep-learning strategies have been
extended to mimic the behavior of iterative algorithms, with reduced
complexity. In this work, we propose an extension of these deep
architectures to robust principle component analysis in which fully-
connected layers are replaced with convolutional ones. This strat-
egy offers spatial invariance and significant reduction in the num-
ber of learned parameters. We then apply the proposed method to
contrast-enhanced ultrasound, in which low-rank tissue signal needs
to be removed in order to visualize blood vessels. We demonstrate
the effectiveness of our approach on simulations and in-vivo rat brain
scans. The resulting images exhibit improved visual quality and con-
trast compared with images obtained by commonly practiced meth-
ods.

Index Terms— Ultrasound, Deep learning, Contrast agents, Un-
folding, Low-rank decomposition.

1. INTRODUCTION

Robust principle component analysis (RPCA) [1, 2] is a powerful
statistical tool for data analysis which is widely used in a variety
of applications such as video surveillance [3], face recognition [4],
and latent semantic indexing [5]. This modeling approach is based
on decomposing the sample matrix into a sum of a low-rank compo-
nent and a sparse component. In stochastic optimization, the recovery
problem is formulated as a convex nuclear norm minimization which
is typically solved by iterative algorithms such as principal compo-
nent pursuit (PCP) [3], outlier pursuit [6], iterative reweighted least
squares [7, 8], Bayesian RPCA [8] and iterative shrinkage and thresh-
olding algorithm (ISTA) [9]. However, such techniques exhibit high
complexity and slow run-time.

The rising interest in neural networks in recent years has led
to the development of various deep-learning methodologies which
mimic the behavior of the aforementioned algorithms [10] to reduce
overall execution time and achieve similar performance with fixed
numerical complexity. Unfolding, or unrolling an iterative algorithm
was suggested by Gregor and LeCun [11] to accelerate algorithm con-
vergence. Iterative algorithms provide a natural recurrent architec-
ture, designed to solve a specific problem, such as sparse approxi-
mations [12], channel estimation [13] and more. The authors of [11]
showed that by considering each iteration of an iterative algorithm as
a layer in a deep network and subsequent concatenation of a few such
layers, it is possible to train networks to achieve a dramatic improve-
ment in convergence over iterative algorithms.

This project has received funding from the European Unions Horizon
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In the context of RPCA, a principled way to construct learnable
pursuit architectures for structured sparse and robust low rank mod-
els was introduced in [10]. The proposed networks, derived from the
iteration of proximal descent algorithms, were shown to faithfully
approximate the solution of RPCA while demonstrating several or-
ders of magnitude speed-up compared to standard optimization algo-
rithms. Following the same paradigm, various solutions were intro-
duced in recent years for different tasks such as clustering and classi-
fication [14], dynamic anomalography [15], online optimization [16]
and more. However, this approach is based on a non-convex formu-
lation of the nuclear norm in which the rank (or an upper bound of
it) is assumed to be known a priori. This poses a network design lim-
itation, as the rank can vary between different applications or even
different realizations of the same application.

In this paper, we propose to combine RPCA with the power
of complex convolutional neural networks [12, 17]. We introduce
a network architecture based on unfolding a variation of ISTA for
low-rank and sparse modeling where the thresholding parameters are
learned and the rank is not known in advance. In addition, we replace
the fully-connected layers, typically used, with convolutional kernels
which offer spatial invariance and lead to significant reduction in the
number of learned parameters. We demonstrate the effectiveness of
our approach on contrast-enhanced ultrasound (CEUS) scans [18],
for suppressing tissue clutter signal from the blood signal.

CEUS allows the detection and visualization of blood vessels
whose different physical parameters are associated with different
clinical conditions [19]. Gas microbubbles are used as ultrasound
contrast agents (UCAs) which are administrated intravenously and
flow throughout the vascular system due to their similarity in size
to red blood cells [20]. A major challenge in CEUS is to suppress
clutter signals stemming from stationary and slowly moving tissue
as they introduce significant artifacts in blood flow imaging [21].
Most of the current solutions in the field of ultrasound imaging are
based on singular value decomposition (SVD) of the spatiotemporal
correlation matrix of successive temporal samples [22, 23]. How-
ever, similar to [10], this SVD-filtering uses a predefined rank which
typically is unknown, and can vary between scans of the same organ
of different patients.

To overcome this, we adopt RPCA for CEUS where we model
the received signal as the composition of low-rank tissue signal and
sparse UCA signal. We implement and apply fast ISTA (FISTA)
[24] on in-vivo data to separate the UCA from the tissue signal.
Then, we use the results of the latter along with additional sim-
ulated UCA/tissue acquisitions to train an unfolded network with
fixed-length and complex convolutional layers. The performance of
the network is tested on in-vivo rat brain scans and the results are
compared with those achieved by the commonly practiced SVD-
filtering and FISTA. Using only 10 layers, we achieve better contrast
in vascular visualization than SVD-filtering and FISTA with 30000
iterations.

The rest of the paper is organized as follows.In Section 2 we
introduce the problem formulation. Section 3 describes a solution
via an iterative algorithm. In Section 4 we propose a convolution-

3212978-1-5386-4658-8/18/$31.00 ©2019 IEEE ICASSP 2019



SVT

T

I− 1
Lf
HH

1 H1

HH
1

D

Lk

Sk

−HH
1 H2

HH
2

−HH
2 H1

I− 1
Lf
HH

2 H2

(a) Iterative algorithm for sparse and low-rank separation.
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Fig. 1: Architecture comparison between the iterative algorithm (panel (a)) and its unfolded counterpart (panel (b)). The learned network in
panel (b) draws its architecture from the iterative algorithm, and is trained on examples from a given dataset. In both panels, D is the input
measurements matrix, Sk and Lk are the estimated sparse and low-rank matrices in each iteration/layer, respectively.

based unfolded network for RPCA and its application to ultrasound
imaging. Section 5 presents simulation and in-vivo results of both the
iterative and unfolded algorithms. We conclude in Section 6.

Throughput the paper, x represents a scalar, x a vector, X a ma-
trix and IN×N is the N × N identity matrix. The notation || · ||p
represents the standard p-norm and || · ||F is the Frobenius norm.
Subscript xl denotes the lth element of x and xl is the lth column
of X. Superscript x(p) represents x at iteration p, T ∗ denotes the
adjoint of T, and Ā is the complex conjugate of A.

2. PROBLEM FORMULATION

We begin by describing the general acquisition model. Assume a
measured data matrix D of dimensions m×n, which is expressed as
the following sum

D = H1L + H2S + N. (1)

Here, H1 and H2 are known measurement matrices of dimensions
m×k1 andm×k2, respectively, and N is a matrix of additive noise.
The latter model asserts that the measurements can be decomposed
into a low-rank part L and a sparse part S. Our goal is to recover
both L and S of (1).

Similar to [25], recovering L and S can be performed via mini-
mization of

min
L,S

1

2
||D− (H1L + H2S)||2F + λ1||L||∗ + λ2||S||1,2, (2)

where || · ||∗ stands for the nuclear norm and || · ||1,2 is the mixed
l1,2 norm. We use the mixed l1,2 norm (though the standard l1 norm
can also be used), since in our application UCA positions correspond
to the positions of blood vessels, which are assumed to be static, or
change slightly during the acquisition period. Thus, they share a com-
mon support dictated by the blood vessels in which they flow. The nu-
clear norm is known to promote low-rank solutions, and is the convex
relaxation of the non-convex rank minimization constraint [26]. By
defining

X =

[
L
S

]
, P1 =

[
I
0

]
, P2 =

[
0
I

]
and A = [H1,H2], (2) can be rephrased as

min
L,S

1

2
||D−AX||2F + h(X), (3)

where h(X) =
∑2
i=1 λiρi(PiX) with ρ1 = || · ||∗ and ρ2 = || · ||1,2.

Our goal is to minimize (3) using a fixed complexity deep net-
work. To do so, we first describe an iterative solution to (3), which
we then unfold as a deep network.

3. ITERATIVE SOLUTION VIA PROXIMAL DESCENT

The minimization problem (3) is a regularized least-squares prob-
lem, for which numerous numerical minimization algorithms exist.
Specifically, (F)ISTA involves finding Moreau’s proximal (prox)
mapping [27] of h, defined as

proxh(X) = argmin
U

{
h(U) +

1

2
||U−X||2F

}
. (4)

Plugging the definition of X into (4) yields

proxh(X) = argmin
U1,U2

{
λ1ρ1(U1) +

1

2
||U1 − L||2F

+λ2ρ2(U2) +
1

2
||U2 − S||2F

}
,

for which it can be shown that since proxh(X) is separable in L and
S, it holds that

proxh(X) =

[
proxρ1(L)
proxρ2(S)

]
. (5)

The proximal mapping (5) is applied in each iteration to the gra-
dient of the quadratic part of (3), given by

d

dX

1

2
||D−AX||2F = AH(AX−D),

and more specifically,[
d
dL
d
dS

]
=

[
HH

1 (H1L + H2S−D)
HH

2 (H1L + H2S−D)

]
.

Similar to [28], the general iterative step of ISTA applied to minimiz-
ing (2) is given by

Lk+1 = SVTλ1/Lf

{(
I− 1

Lf
HH

1 H1

)
Lk −HH

1 H2Sk +HH
1 D

}
Sk+1 = Tλ2/Lf

{(
I− 1

Lf
HH

2 H2

)
Sk −HH

2 H1Lk +HH
2 D

} ,

(6)
where Lf is the Lipschitz constant of the quadratic term of (3), given
by the spectral norm of AHA and SVT(·) and T (·) are the singular
value thresholding [29] and mixed l1/2 soft thresholding operators
[30]. The diagram in Fig. 1(a) presents the iterative algorithm, which
relies on knowledge of H1,H2 and selection of λ1 and λ2.
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Fig. 2: Simulation results. (a) A single frame from an input movie of super-imposed UCA and tissue clutter. (b) Ground-truth UCA frame. (c)
Recovered UCA frame via the unfolded network. (d) Ground-truth tissue signal. (d) Recovered tissue signal via the unfolded network. Color
bar is in dB.

4. CONVOLUTION BASED DEEP LEARNING RPCA

4.1. Unfolding the iterative algorithm

As previously mentioned, an iterative algorithm can be considered
as a recurrent neural network, in which the kth iteration can be re-
garded as the kth layer in a feedforward network [10]. On the other
hand, convolutions are linear operators, thus considering (6), for each
layer in the network we swap each of the matrices dependent on H1

and H2 with convolution layers (kernels) Pk
1 , . . . ,P

k
6 of appropriate

sizes. The kernels as well as the regularization parameters λk1 and λk2 ,
are learned in training. By doing so, the following equations for the
kth layer are obtained

Lk+1 = SVTλk
1

{
Pk

5 ∗ Lk + Pk
3 ∗ Sk + Pk

1 ∗D
}
,

Sk+1 = Tλk
2

{
Pk

6 ∗ Lk + Pk
4 ∗ Sk + Pk

2 ∗D
}
,

with ∗ being a convolution operator. The latter can be considered
as a single layer in a multi-layer feedforward network. A diagram
of a single layer from the unfolded architecture is given in Fig. 1(b),
where the supposedly known model matrices were replaced by the
2D convolution kernels Pk

1 , . . . ,P
k
6 , which are learned as part of the

training process of the overall network.
Contrary to previous works in unfolding RPCA which considered

training fully connected (FC) layers [10], we employ convolution ker-
nels in our implementation, which allows us to achieve spatial invari-
ance while reducing the number of learned parameters considerably.
In many applications, the recovered matrices S and L represent a 3D
volume, or movie, of dynamic objects imposed on a (quasi) static
background. Each column in S and L is a vectorized frame from the
recovered sparse and low-rank movies. Thus, we consider in prac-
tice our data as a 3D volume and apply 2D convolutions. The SVT
operation at the kth layer is performed after reshaping the input 3D
volume into a 2D matrix, by vectorizing and column-wise stacking
each frame.

The thresholding coefficients are learned independently for each
layer. Given the kth layer, the actual thresholding values for both the
SVT and soft-thresholding operations are given by thrkL = σ(λkL) ·
aL ·max(Lk), and thrkS = σ(λkS) · aS · mean(Sk), where σ(·) is a
sigmoid function, aL and aS are fixed scalars (in our application we
chose aL = 0.4 and aS = 1.8) and λkL and λkS are learned in each
layer by the network.

4.2. Training the unfolded network

The unfolded network presented in the previous section is trained us-
ing back-propagation in a supervised manner. Generally speaking,
we obtain training examples Di and corresponding sparse Ŝi and
low-rank L̂i decompositions. In practice, Ŝi and L̂i can either be
obtained from simulations or by decomposing Di using iterative al-
gorithms such as FISTA. The loss function is chosen as the sum of
the mean squared errors (MSE) between the predicted S and L values

of the network and Ŝi, L̂i, respectively,

L(θ) = 1

2N

N∑
i=1

||fS(Di,θ)−Ŝi||2F+
1

2N

N∑
i=1

||fL(Di,θ)−L̂i||2F .

In the latter equation, fS/L is the sparse/low-rank output of the un-
folded network with learnable parameters θ = {Pk

1 , . . . ,P
k
6 , λ

k
1 , λ

k
2},

k = 1, . . . ,K, where K is the number of chosen layers.

4.3. Application to ultrasound imaging

In this section we describe how the unfolded network can be ap-
plied to improve vascular visualization in contrast enhanced ultra-
sound (US) imaging. In US imaging, typically a series of pulses are
transmitted to the imaged medium. The resulting echoes from the
sonicated medium are received in each transducer element and then
combined in a process called beamforming to produce a focused im-
age. As presented in [31], after demodulation the complex analytical
(IQ) signal can be represented as

D(x, z, t) = I(x, z, t) + jQ(x, z, t),

where I(x, z, t), Q(x, z, t) are the in-phase and quadrature compo-
nents of the demodulated signal, x, z are the vertical and axial co-
ordinates, and t indicates frame number. The signal D(x, z, t) is a
sum of IQ demodulated echoes returned from the UCA (S(x, z, t))
as well as from the tissue (L(x, z, t)), contaminated by additive noise
(N(x, z, t)):

D(x, z, t) = L(x, z, t) + S(x, z, t) +N(x, z, t).

Acquiring a series of t = 1, . . . , T frames and stacking them as vec-
tors in a matrix leads to the following model

D = L + S + N. (7)

Assuming that each movie frame is of size M ×M pixels, each of
the matrices of (7) are of size M2 × T . Model (7) corresponds to the
low-rank and sparse model with H1 = H2 = I.

In this application, UCA flow within the vasculature and allow
their clear visualization. However, the tissue clutter signal first needs
to be removed. Given a set of T scans of flowing UCAs, we apply
FISTA to the data and achieve approximations for the low-rank tissue
and sparse UCA signals, with fixed thresholding parameters (λ1 =
0.02, λ2 = 0.001) and for 30000 iterations.

Our unfolded network consists of 10 layers. The first two layers
use convolution kernels of size 5× 5× 1, while the rest of the layers
have 3×3×1 kernels. As the demodulated input signal D is complex
valued, complex convolutions were implemented [17].

Training a deep network with millions of parameters typically re-
quires a vast amount of training examples, and in practice, US scans
of specific organs are not available in abundance. Thus, convolutions
instead of FC layers help in reducing the total number of trained pa-
rameters. Furthermore, to produce a large number of training exam-
ples, we rely on two strategies: patch-based analysis and simulations.
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Fig. 3: Extraction of UCA from tissue signal. (a) SVD based separation. (b) L+S FISTA separation. (c) Deep network separation, with the
unfolded architecture of the FISTA algorithm. Color bar is in dB.

First, we divide the US movie into 3D patches (axial coordinate, lat-
eral coordinate and frame number) and apply FISTA on each of these
3D patches to obtain the desired decomposition. In practice each such
patch is of size 32 × 32 pixels (1.64 × 1mm2), over 20 consecutive
frames and between consecutive patches there exists an overlap of
50%, which enables us to increase the number of training data. Sec-
ond, we generate additional data by simulating an acquired movie of
randomly flowing UCAs, cluttered by tissue, in a realistic simulation.
The simulation provides a perfect ground truth, which helps improve
the reconstruction result of the network over its iterative counterpart.

Implementation was done in Python 3.5, using the PyTorch 0.4.0
package. Training was performed using the ADAM optimizer with a
constant learning rate of 0.01. For the in-vivo results, we first train
the network on a simulated movie of UCAs and tissue signal for 10
epochs. We then refine the network by training on an in-vivo scan
of a rat for an additional 10 epochs. In-vivo results were obtained
after applying the network to a scan of a different rat, on which the
network did not train.

5. RESULTS

In this section, we present results of improved vascular visualization
with a fixed-complexity deep unfolded architecture for both simula-
tions and in-vivo scans.

Figure 2 shows the recovery results of the network on a single
frame from simulated data (panel (a) shows an example input frame).
The network was trained only on simulations for 10 epochs. Pan-
els (c) and (e) show the UCA and tissue recoveries of the network,
respectively. Visual inspection reveals these recoveries to be very
similar to the ground truth images (panels (b) and (d), respectively).

Figure 3 presents in-vivo results. Panel (a) depicts the resulting
SVD based extraction of the UCA signal, while panel (b) shows the
FISTA based separation and panel (c) shows the result of the unfolded
network. In all three cases, once the CEUS movie is extracted from
the input movie, in order to present a single representative image,
for each pixel, we take its maximum absolute value over the movie
frames. This technique is commonly referred to as maximum inten-
sity projection (MIP).

In each panel, the green and red boxes indicate selected areas,
whose enlarged views are presented in the corresponding green and
red boxes below each panel. Visual inspection of the entire panels
(a)-(c) shows that both FISTA and unfolded network achieve CEUS
signal separation with lower residual clutter/tissue background than
the naive SVD approach. Moreover, as the unfolded network was also
trained on simulated data, for which we have perfect tissue suppres-
sion, its performance in terms of contrast seems to surpass FISTA.
Considering the enlarged regions below panels (a)-(c) further sup-

ports this conclusion, showing better contrast of the FISTA and un-
folded network outputs.

To further quantify the performance of each method, we provide
a metric to assess the contrast ratio of the output of each method.
For each panel we calculate the contrast ratio (CR), defined as CR =
µs/µb, and assess the performance of each method. CR is calculated
between a selected patch, e.g. the red or green boxes in panels (a)-(c)
and a reference patch, marked by the dashed yellow patches, which
represents the background, for the same image. That is, for each
panel we estimate the CR values of the red - yellow and green - yellow
boxes, where µs is the mean of the red/green box and µb is the mean
of the dashed yellow patch. Table 1 provides the estimated CR values
of each method, respectively.

Table 1: CR values for the selected green and red rectangles of Fig. 3,
as compared with the dashed yellow background rectangle in each
corresponding panel. All values are in dB.

SVD FISTA Unfolded
Green box 4.68 5.52 15.24
Red box 4.56 5.24 14.88

In CR, higher values imply higher contrast ratios, which suggest
better noise suppression and better signal depiction. Considering both
tables, it is evident that the FISTA and unfolded network approaches
achieve better CR values.

6. CONCLUSION

In this work, we unfold a first order iterative algorithm for RPCA de-
composition as a deep network, and replace the FC layers with learn-
able convolution kernels. In contrast to previous results, our network
does not need to know the rank of the low-rank part a-priori and is
suitable for complex valued data. We then applied our methodology
to the problem of tissue clutter suppression in CEUS and showed that
the acquired movie can be modeled as a composition of a low-rank
part for the tissue signal and a sparse matrix for the UCA signal. We
then train an unfolded network of 10 layers on this task and apply the
network to simulated and in-vivo data, showing better visual quality
(higher contrast) than the commonly used SVD filter and a FISTA
based iterative algorithm with 30000 iterations.
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