
DEEP LEARNING FOR MINIMAL-CONTEXT BLOCK TRACKING THROUGH
SIDE-CHANNEL ANALYSIS

L. Jensen? G. Brown? X. Wang? J. Harer? S. Chin?

? Boston University

ABSTRACT
It is well known that electromagnetic and power side-channel
attacks allow extraction of unintended information from a
computer processor. However, little work has been done
to quantify how small a sample is needed in order to glean
meaningful information about a program’s execution. This
paper quantifies this minimum context by training a deep-
learning model to track and classify program block types
given small windows of side-channel data. We show that
a window containing approximately four clock cycles suf-
fices to predict block type with our experimental setup. This
implies a high degree of information leakage through side
channels, allowing for the external monitoring of embedded
systems and Internet of Things devices.

Index Terms— block tracking, side-channel analysis,
machine learning, deep learning

1. INTRODUCTION

Computer processors consume power and emit low energy
electromagnetic (EM) radiation according to the currents in
their transistors and circuitry. Side-channel attacks utilize this
unintended, external information to infer the current state of
the processor. These attacks were first used to break crypto-
graphic systems by analyzing the timing of processes to gain
information about security keys [1]. Since then, additional
studies have demonstrated that power [2], sound [3], tempera-
ture [4], and EM [5] outputs can all lead to viable side-channel
attacks.

Side-channel attacks are frequently aimed at extracting
private cryptographic secrets. Information from side channels
can also be used in less malicious ways. As a defensive mea-
sure, analysis of side-channel signals can be used to classify
machine states for malfunction detection. This is especially
important on embedded systems, which are becoming more
common in dedicated Internet of Things applications. Be-
cause of the specialized nature of these systems, they are fre-
quently low in memory and processor power. As a result, tra-
ditional defensive methods such as on-device malware detec-
tion and self-monitoring are infeasible for ensuring security
and maintenance. However, external malware detection and

Thanks to DARPA for funding this research.

monitoring for these small systems can be achieved through
side-channel analysis. Ideally, a monitoring system could de-
tect both whether and when any deviation from a program’s
normal execution occurred. This requires a monitoring sys-
tem to be able to track program execution.

A program’s execution can be viewed as consisting of
basic blocks separated by control flow, with each basic block
containing a portion of assembly level instructions within
which no branch or jump occurs. As a first step towards the
monitoring of embedded systems, we aim to use side-channel
analysis to track a program’s sequence of basic blocks. We
measure both the power consumption and EM radiation sur-
rounding the target device, and then use a convolutional
neural network (CNN) to segment the measured EM signals
according to labelled block types at each observed time sam-
ple. In particular, we aim to show that these block types
can be classified after observing side channels for only a
very small number of clock cycles—showing that even these
small windows of side-channel data still carry relevant leaked
information.

2. RELATED WORKS

Problems in side-channel analysis include cryptanalysis,
program-level classification, block-level tracking, and instruction-
level tracking. Many papers have demonstrated the ability of
machine learning algorithms to tackle these problems through
EM and power side channels [6, 7, 8, 9, 10, 11]. Support
vector machines have successfully been used for both crypt-
analysis [7, 10] and program classification [6]. A handcrafted
machine learning algorithm based on hidden Markov mod-
els has also been successfully applied to the sequencing of
program execution at the instruction level [11].

Deep learning models have also been repeatedly demon-
strated to successfully analyze the EM and power side chan-
nels. CNN models are frequently used for side-channel crypt-
analysis [7, 8], and recurrent neural network (RNN) models
have also been used for cryptanalysis [7]. We build upon the
success of CNN and RNN models in this domain in order to
implement our block-tracking model.

Deep learning models have been used less frequently for
applications of side-channel analysis outside of cryptanalysis.
A multilayer perceptron model was used for program classi-

3207978-1-5386-4658-8/18/$31.00 ©2019 IEEE ICASSP 2019

Fig. 1. Example trace and correct block type classifications for each time sample. The colors in the figure on the right represent
different block classes at those time samples. Note that only a fraction of a complete program trace is shown above.

fication [9] with good results. That model analyzed the same
experimental traces we analyze in this paper, but used pro-
gram labels instead of the block labels we use to approach the
more difficult problem of block tracking.

As side-channel analysis becomes a topic of growing in-
terest, these applications of machine and deep learning tech-
niques have achieved many important results in this domain.
To the best of the authors’ knowledge, none of these works
have explored the minimum bounds of context needed for
analysis. The capacity of the EM and power side channels
has been studied in specific cases designed to understand the
most vulnerable instructions [12, 13, 14]. Instead of focusing
on specific components of the program, we test the minimum
required context for block tracking across programs similar to
those in real-world applications.

3. DATA COLLECTION

Our data was generated on an Arduino Mega 2560 proces-
sor, which has a clock speed of 16 MHz. The time samples
were measured at a rate of 500 MHz—providing roughly 31
samples per instruction. The samples were gathered on a Pi-
coScope 6405, with each time sample containing two simulta-
neous measurements: power consumption and EM radiation.
We measure power consumption by measuring direct current
drain from the power source, and EM radiation by measuring
the magnetic field strengths. The direct current measurements
were taken via an ETS-Lindgren 94430 Split-Core Current
Transformer. For distance measurements, the magnetic field
was measured via an Aaronia MDF 9400 broadband magnetic
field tracking antenna. For close measurements, a custom ver-
sion of Beehive’s 100A EMC Probe was pressed to the top of

Fig. 2. The two-channel data collection setup measures power
consumption and EM radiation at 500 MHz.

the processor.
Experiments were run under four different physical se-

tups to test signal degradation over increasing distances. The
“ideal” 0” samples were gathered with a magnetic probe di-
rectly on the processor and the current transformer placed
after the power regulator. The 4”, 8”, and 12” measurements
were gathered with the magnetic antenna at those distances
from the processor. For these measurements, the current
transformer was at a single fixed location before the regulator
on the main power connector.

Signals were measured for two different programs: math
and bit-toggle. The math program repeatedly generates ran-
dom numbers and was labelled with five block types: write-
low, write-high, random number seed, random number gener-
ation, and loop.

3208

The bit-toggle program repeatedly flips the register be-
tween 0x00000000 and 0xffffffff. It was labeled with three
block types: write-low, write-high, and loop.

4. METHODS

4.1. Data Processing

During data collection we extracted the raw data as signal
traces. Each time step of the traces was then labelled by block
type using the program execution, i.e. write-low, write-high,
etc. We first separated the data according to the 0”, 4”, 8”, and
12” distances used in our data collection setups. We then sub-
sequently separated the traces in each of these datasets into
a training set of 2800 traces and a testing set of 180 traces.
Each math program trace contained approximately 57,000 la-
beled samples and each toggle program trace contained ap-
proximately 9,000 samples. During training, we randomly
sampled windows from the training traces with a bias to bal-
ance an unbalanced label distribution. For testing, we sam-
pled without bias.

In order to find the minimal context required for block
tracking, we broke the traces into windows of varying length.
We tested our models with window sizes of 48, 64, 96, 128,
192, and 256 samples in length. Most windows were con-
tained in a single block type. For the windows in transitions
between block types, labels were proportional to the number
of samples from each block.

4.2. Deep Learning Model Architecture

In the past several years, deep learning has achieved remark-
able results in domains where data is plentiful and rich in
structure [15]. These domains include signal, image, and
video processing. For signal processing, one-dimensional
CNNs have proven very effective for extracting important
signal features. Originally applied to images, CNNs learn
layers of filters that are convolved with the input, and then
use the output of these repeated convolutions for classifica-
tion or encoding. Another powerful deep learning model is
the RNN, which operates sequentially on data while updating
a hidden “memory” state. This hidden state allows the RNN
to relate features across time. One successful RNN technique
for handling the memory update is the gated recurrent unit
(GRU) [16].

Our model architecture is shown in Figure 3. It consists
of four convolution layers, a single GRU layer, and a final
fully-connected layer. Inputs are processed by the convolu-
tion layers, generating basic signal features. We use convo-
lution strides of length two instead of max-pooling in order
to reduce dimension. The GRU layer then runs over the out-
put of the convolution layers. The output of the GRU layer
is then passed into the fully-connected layer which outputs a
block classification. We utilized exponential linear unit ac-
tivation functions [17] on each layer except for the output

Fig. 3. Our combined CNN and GRU architecture learns ba-
sic signal features in the lower layers and combines these fea-
tures across time using a gated recurrent unit. This architec-
ture classified block types with high accuracy across many
different window sizes.

layer, which uses a softmax to produce the classification. We
implemented batch normalization [18] on each layer and in-
cluded dropout [19] on the four last layers to combat overfit-
ting on the training data. Models for each dataset and win-
dow size were trained from random initialization using the
Keras framework [20] and optimized using the Adam opti-
mizer [21]. Each model was trained until a pre-determined
stopping epoch sufficient to ensure model convergence.

In our tests this model outperformed both models using a
pure RNN applied to a spectrogram and models using fully-
connected layers applied to the frequency domain. We trained
an independent model for each window size and distance.

5. EXPERIMENTAL RESULTS

We trained neural networks to perform block-type classifica-
tion with different window sizes for the math program. The
testing results of our models trained on the math datasets are
plotted in Figure 4 for all window sizes and distances. We
were pleased that our model achieved high classification ac-
curacy for multiple window sizes. However, we noted that
the smallest window sizes resulted in a noticeable decrease
in classification accuracy. We used this drop in accuracy to
estimate a minimum window length in which the windowed
data still carries sufficient information to consistently classify

3209

Fig. 4. Classification accuracy across various window sizes and distances. Note how accuracy plateaus above a window size
of 128 samples. We estimate this window size as the minimum context required for block-type classification—equivalent to
approximately four clock cycles.

block types. From our results, we estimated this minimum
to be 128 sample windows, equivalent to approximately four
clock cycles or 256 ns in our experiment setup.

We proceeded to verify this chosen window size using the
bit-toggle program. We applied the 128 sample window size
to the 0”, 4”, 8”, and 12” bit-toggle measurements. We found
that our model again achieved high accuracy on the bit-toggle
program. This verifies that the 128 sample window trans-
fers well to new program executions in the same experimental
setup. Both the math and toggle program results are found in
Table 1.

We did not observe any meaningful relationship between
accuracy and measurement distance. This suggests that the
measurement noise in this distance regime is negligible in
comparison to the signal.

6. CONCLUSION

In this paper we empirically estimate an upper bound for the
minimum window context required to carry information for
predicting block type. With experimental setups measuring
from multiple distances, we achieve a high block-type classi-
fication testing accuracy, over 99.0%, using a window context
of four clock cycles. Our results can help to estimate baseline
window sizes for different experimental setups than ours (e.g.
different processors, sampling rates, distances, etc.).

Many directions remain in which to extend this research.
The fine-grained classification of individual blocks directly
supports program-level classification. Like all supervised
classification, this work is limited by the need for labelled
datasets. In the future, we plan to employ unsupervised

Distance
Program Window 0” 4” 8” 12”

Math 48 87.9 90.1 93.0 90.9
64 91.5 92.2 95.5 92.5
96 95.0 98.4 98.4 97.5
128 99.2 99.4 99.7 99.0
192 99.9 99.7 99.7 99.8
256 99.6 99.4 99.5 99.5

Toggle 128 99.7 98.3 100 99.7

Table 1. Classification accuracy for each model’s perfor-
mance on the distinct test sets.

learning techniques to detect anomalies without training on
explicitly-labelled datasets. We hope to recognize deviations
from desired program execution such as malware or malfunc-
tion. In particular, we hope to both identify anomalies in
program execution and, using the window size determined in
this work, identify when in program execution these anoma-
lies occur.

3210

7. REFERENCES

[1] Paul Kocher, “Timing attacks on implementations of
diffie-hellman, rsa, dss, and other systems,” in Ad-
vances in Cryptology — CRYPTO ’96, Neal Koblitz,
Ed., Berlin, Heidelberg, 1996, pp. 104–113, Springer
Berlin Heidelberg.

[2] Paul Kocher, Joshua Jaffe, and Benjamin Jun, “Differ-
ential power analysis,” in Advances in Cryptology —
CRYPTO’ 99, Michael Wiener, Ed., Berlin, Heidelberg,
1999, pp. 388–397, Springer Berlin Heidelberg.

[3] Daniel Genkin, Adi Shamir, and Eran Tromer, “Rsa
key extraction via low-bandwidth acoustic cryptanaly-
sis,” Cryptology ePrint Archive, Report 2013/857, 2013.

[4] Michael Hutter and Jrn-Marc Schmidt, “The tempera-
ture side channel and heating fault attacks,” IACR Cryp-
tology ePrint Archive, vol. 2014, pp. 190, 2014.

[5] Dakshi Agrawal, Bruce Archambeault, Josyula Rao, and
Pankaj Rohatgi, “The em side channel(s): Attacks and
assessment methodologies,” 2003.

[6] Ronald Riley, James Graham, Ryan Fuller, Rusty Bald-
win, and Ashwin Fisher, “Generalization of algorithm
recognition in rf side channels between devices,” in Cy-
ber Sensing 2018. International Society for Optics and
Photonics, 2018, vol. 10630, p. 106300C.

[7] Houssem Maghrebi, Thibault Portigliatti, and Em-
manuel Prouff, “Breaking cryptographic implementa-
tions using deep learning techniques,” Cryptology ePrint
Archive, Report 2016/921, 2016.

[8] Emmanuel Prouff, Remi Strullu, Ryad Benadjila,
Eleonora Cagli, and Cécile Canovas, “Study of deep
learning techniques for side-channel analysis and intro-
duction to ascad database,” IACR Cryptology ePrint
Archive, vol. 2018, pp. 53, 2018.

[9] Xiao Wang, Quan Zhou, Jacob Harer, Gavin Brown,
Shangran Qiu, Zhi Dou, John Wang, Alan Hinton, Car-
los Aguayo Gonzalez, and Peter Chin, “Deep learning-
based classification and anomaly detection of side-
channel signals,” in Cyber Sensing 2018. International
Society for Optics and Photonics, 2018, vol. 10630, p.
1063006.

[10] Gabriel Hospodar, Benedikt Gierlichs, Elke De Mulder,
Ingrid Verbauwhede, and Joos Vandewalle, “Machine
learning in side-channel analysis: a first study,” J. Cryp-
tographic Engineering, vol. 1, no. 4, pp. 293–302, 2011.

[11] Yannan Liu, Lingxiao Wei, Zhe Zhou, Kehuan Zhang,
Wenyuan Xu, and Qiang Xu, “On code execution track-
ing via power side-channel,” in Proceedings of the 2016

ACM SIGSAC Conference on Computer and Communi-
cations Security, New York, NY, USA, 2016, CCS ’16,
pp. 1019–1031, ACM.

[12] Robert Callan, Alenka Zajic, and Milos Prvulovic, “A
practical methodology for measuring the side-channel
signal available to the attacker for instruction-level
events,” 2014 47th Annual IEEE/ACM International
Symposium on Microarchitecture, 2014.

[13] Baki Berkay Yilmaz, Robert Callan, Milos Prvulovic,
and Alenka Zajic, “Capacity of the em covert/side-
channel created by the execution of instructions in a pro-
cessor,” IEEE Transactions on Information Forensics
and Security, vol. 13, no. 3, pp. 605620, 2018.

[14] Alenka Zajic and Milos Prvulovic, “Experimental
demonstration of electromagnetic information leakage
from modern processor-memory systems,” IEEE Trans-
actions on Electromagnetic Compatibility, vol. 56, no.
4, pp. 885893, 2014.

[15] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and
Yoshua Bengio, Deep learning, vol. 1, MIT press Cam-
bridge, 2016.

[16] Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bah-
danau, and Yoshua Bengio, “On the properties of neural
machine translation: Encoder–decoder approaches,” in
Proceedings of SSST-8, Eighth Workshop on Syntax, Se-
mantics and Structure in Statistical Translation. 2014,
pp. 103–111, Association for Computational Linguis-
tics.

[17] Djork-Arné Clevert, Thomas Unterthiner, and Sepp
Hochreiter, “Fast and accurate deep network learn-
ing by exponential linear units (elus),” CoRR, vol.
abs/1511.07289, 2015.

[18] Sergey Ioffe and Christian Szegedy, “Batch normaliza-
tion: Accelerating deep network training by reducing
internal covariate shift,” in Proceedings of the 32Nd
International Conference on International Conference
on Machine Learning - Volume 37. 2015, ICML’15, pp.
448–456, JMLR.org.

[19] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov, “Dropout:
a simple way to prevent neural networks from overfit-
ting,” The Journal of Machine Learning Research, vol.
15, no. 1, pp. 1929–1958, 2014.

[20] François Chollet et al., “Keras,” https://keras.io, 2015.

[21] Diederik Kingma and Jimmy Ba, “Adam: A method
for stochastic optimization.,” CoRR, vol. abs/1412.6980,
2014.

3211

		2019-03-18T11:14:04-0500
	Preflight Ticket Signature

