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ABSTRACT

Robust principal component analysis (RPCA), decomposes a
data matrix into a superposition of a low-rank matrix and a
sparse matrix under certain incoherent conditions. In this pa-
per, we propose a nonlinear generalization of RPCA that uses
two autoencoder networks to achieve such a decomposition,
in which one autoencoder accounts for the low-rank compo-
nent and the other for the sparse component. To this end, we
provide a principled way of constructing these autoencoders
for low-rank and sparse components. The generality of the
proposed model is demonstrated by applying it onto three ap-
plications, namely 1) music/voice separation 2) image denois-
ing and 3) video foreground separation. Experimental results
indicate the effectiveness of the proposed model on these ap-
plication domains.

Index Terms— Autoencoders, Low-rank, Sparsity

1. INTRODUCTION

Principal component analysis (PCA) is a simple yet widely
used method for dimensionality reduction, where a low rank
approximation to the input data matrix is carried out. PCA
finds the directions of greatest variance in the data set and rep-
resents each data point by its coordinates along each of these
directions. Although this procedure is simple to implement,
it is sensitive to the presence of outliers and noise in data. To
increase its robustness to outliers and noise, robust principal
component analysis (RPCA) [1] is proposed to remove sparse
corruptions from input data and then obtain its low rank ap-
proximation. In other words, RPCA splits an input matrix X
into two parts, X = L+S, where L is a low rank approxima-
tion and S contains the sparse outliers and noise. Given such
decomposition, not only the recovery of low rank component
gets improved, but the sparse part is extracted, which enables
the development of a wide range of applications such as face
recognition [2], background modeling [3] and singing-voice
separation [4], to name but a few.

The key idea of RPCA for improving the quality of low
rank representation, is to explicitly add one sparse compo-
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nent to model noise in original data. Autoencoder, as another
way to improve the low rank representation, is to generalize
linear mappings in PCA into nonlinear ones. As shown by
Hinton et al. [5], the low rank representation learned by non-
linear autoencoder networks works much better than PCA.
However, in the setting of standard autoencoder networks, the
nonlinear low rank representation is learned from clean train-
ing data, since its training is sensitive to outliers and noise.
A number of approaches for robustifying autoencoder have
been explored and proposed over the past decade, including
denoising autoencoder [6] [7] [8] [9] and maximum corren-
tropy autoencoder [10] [11]. In this paper, we also investigate
the problem of robustifying autoencoder, from a different per-
spective over previous methods.

As we state above, both RPCA and autoencoder can be
viewed as an extension of PCA. Therefore, is it possible to
combine the best of two methods, which remains the non-
linear representation ability as well as be robust to outliers
and noise? This question motivates our research and leads to
the proposed model Robust Autoencoders. Thus the proposed
model can be viewed in two ways: 1) autoencoders with ro-
bustness to outliers and noise, by explicitly modeling a sparse
corrupted component. 2) RPCA with nonlinearity, using au-
toencoder networks to parameterize nonlinear mappings. The
key idea of the proposed model is, using two autoencoders to
disentangle the low-rank component and the sparse compo-
nent of a data matrix. It bridges the gap between RPCA and
autoencoders, and seeks the best of ”both worlds”. The com-
bination framework in this paper can be further extended to
bridge neural networks with a general family of low-rank and
sparse models.

Unlike standard autoencoders that learn low-rank repre-
sentations via a set of clean training data, the proposed model
obtains the low-rank representation via disentanglement of
two autocoders. The disentanglement does not rely on clean
training data and enables the model work in an unsupervised
setting. Besides, the disentanglement explicitly separates out
one sparse component, while standard autoencoders cannot.
This separated sparse component can be the object of interests
for some real-life applications, e.g. video foreground separa-
tion in Section 4.3.

It is worth mentioning that Zhou et al. [12] developed a
variant of robust autoencoder, which shares some similarity
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to the proposed model since they are also inspired by RPCA.
However, the major difference between their model and the
proposed model is: [12] uses one autoencoder to learn the
low rank representation through a set of training data, while
the proposed model obtain the low rank representation via dis-
entanglement of two autoencoders.

2. ROBUST PRINCIPAL COMPONENT ANALYSIS

Robust principal component analysis (RPCA) is able to re-
cover low rank representations of a data matrix even though
a positive fraction of its entries are arbitrarily corrupted. This
corrupted part of data matrices is explicitly modeled as a
sparse component in RPCA. That is, X = L + S, where X
is the original data matrix, L has low rank and S is sparse.
A natural estimator accounting for the sparsity of S is to
minimize the number of nonzero entries, i.e. `0-norm. The
following optimization problem is formulated:

min
L,S

rank(L) + λ‖S‖0

s.t. X = L + S
(1)

Where λ is a positive regularization parameter to balance
the significance of minimizing the sparsity compared to the
minimization of rank. Although optimization problem (1) is
straightforward to think, both rank and `0-norm minimization
is NP-hard and thus intractable. Then, Candes et al. [1] use
the nuclear norm ‖.‖∗ and the `1-norm to serve as convex sur-
rogates of the rank and `0-norm, respectively. Accordingly,
the RPCA is defined as:

min
L,S
‖L‖∗ + λ‖S‖1

s.t. X = L + S
(2)

Where ‖.‖∗ is the nuclear norm, i.e. the sum of singular val-
ues of the matrix. ‖.‖1 is the `1-norm, i.e. the sum of absolute
values of entries. The optimization problem (2) is a convex
relaxation of (1) and has been proved to reliably obtain the
low-rank matrix L and the sparse matrix S under certain in-
coherent conditions [1].

3. ROBUST AUTOENCODERS

The proposed Robust Autoencoder (RAE) is essentially a
combination of autoencoders and RPCA. It explicitly models
the outliers in data matrices similar to RPCA (i.e. the sparse
component to increase its robustness), and at the same time,
has nonlinear capability similar to the autoencoder networks.
Figure 1 shows the architecture of the proposed model.

In analogy to RPCA, the proposed model splits input data
X into two parts X = L + S, where each part is modeled by
an autoencoder network. In particular, the low rank represen-
tation L is modeled by an under-complete (low-rank) autoen-
coder, while the sparse component S is modeled by a sparse

Fig. 1. Proposed robust autoencoders architecture. The low
rank autoencoder contains an encoder fL(.) and a decoder
gL(.). Similarly, the sparse autoencoder has an encoder fS(.)
and a decoder gS(.).

autoencoder. That is,

min
fL,gL,fS ,gS

rank(L) + λ‖S‖0

s.t. X = L + S
L = gL(fL(X))

S = gS(fS(X))

(3)

Where fL(.), gL(.) are the encoder and decoder functions for
L. fS(.), gS(.) are the encoder and decoder functions for S.

Herein, we use `1-norm to serve as convex surrogates of
`0-norm, as Candes et al. [1] suggested. For the rank mini-
mization, we adopt ideas from under-complete autoencoders
[13], which implicitly force the rank of encoding representa-
tion be small by setting the number of neurons in the middle
layer much less than the input layer. This relaxed rank con-
straint can be described as rank(fL(X)) < rank(X). There-
fore, the complete optimization problem of the proposed ro-
bust autoencoders can be formulated as following:

min
fL,gL,fS ,gS

L
(
X, gL(fL(X)) + gS(fS(X))

)
+ λ‖gS(fS(X))‖1

s.t. rank(fL(X)) < rank(X),
(4)

where L is a loss function to measure the difference, and λ is
a positive parameter to balance the significance of minimiza-
tion. In particular, a small value of λ will encourage more
data to be isolated into the sparse component S = gS(fS(X))
and obtain a better reconstruction of X, while a large λ works
the other way around.

It is worth mentioning that the sparse autoencoder we
used in Figure 1 is different from traditional sparse autoen-
coders [14] [15]. Traditional sparse autoencoders often have
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an over-complete encoding representation in the middle layer
(i.e. rank(fS(X)) > rank(X)) and a sparsity constrain on
the encoding representation (i.e. ‖fS(X)‖1). They are resem-
bling of sparse coding [16] and seek to learn useful sparse
representation. However, our goal is to disentangle a sparse
component in original data space, in analogy to RPCA. Thus
our sparse autoencoder has the same dimension of the encod-
ing representation (i.e. rank(fS(X)) = rank(X)), and put
the sparsity constrain on the output layer (i.e. ‖gS(fS(X))‖1).

4. EXPERIMENTS

In this section, we present an experimental evaluation of the
proposed model in practical applications. Three sets of exper-
iments are conducted which are summarized as follows:

• As a novel approach for low-rank and sparse mod-
elling, the proposed model is evaluated on the mu-
sic/voice separation task with a comparison against
other unsupervised state-of-the-art methods.

• As a robust extension of standard autoencoders, the
proposed robust autoencoder is evaluated on an im-
age denoising task with a comparison against standard
autoencoders.

• As a nonlinear variant of RPCA, the proposed robust
antoencoder is evaluated on a video foreground separa-
tion task with a comparison against RPCA.

Our implementation is built on the machine learning li-
brary, tensorflow [17]. We use two layers of autoencoders,
and each layer of encoder f(.) and decoder g(.) has the acti-
vation function ReLu. Note, all experiments are conducted in
an unsupervised manner, i.e. no training data is provided and
we directly optimize the problem in (4).

4.1. Music/voice separation

We now evaluate the proposed model in the task of mu-
sic/voice separation, which aims to separate the singing voice
and musical background from a monaural recording. This
task is very challenging when no prior training or particular
features are provided, i.e. in an unsupervised manner. RPCA
has been shown to provide the state-of-the-art results [4].

Since music instruments can reproduce the same sounds
each time they are played and music has, in general, an un-
derlying repeating musical structure, we can think of music
as a low-rank signal. Singing voices, on the contrary, have
more variation (higher rank) but are relatively sparse in the
time and frequency domains. We can then think of singing
voices as components making up the sparse matrix. In both
RPCA and the proposed model, the low-rank component L
is expected to contain music accompaniment and the sparse
component S to contain vocal signals.

The separation performance is evaluated on the MIR-1K
dataset [18], containing 1000 Chinese karaoke clips per-
formed by amateur singers. Voice and music will be mixed
at 0 dB. The experimental settings closely followed that of
[4]. For the evaluation criteria, we report the global normal-
ized source-to-distortion ratio (GNSDR), global source-to-
interference ratio (GSIR) and global source-to-artifacts ratio
(GSAR) as [4], [19]. The most important measure is GNSDR
as it measures the overall performance.

Results for the music channel of MIR-1K dataset are
shown in Table 1, with comparison to REPET-SIM [20],
RPCA [4] and RPCAs [19]. As you can see, the proposed
robust autoencoder achieved the best separation results for
the music channel of MIR-1K dataset, in terms of the overall
criterion GNSDR. On the other hand, the proposed model
performs slightly worse than RPCA for separating the voice
channel of MIR-1K dataset, where the proposed RAE ob-
tained GNSDR = 1.63 dB as comparison to GNSDR= 1.68
dB of RPCA with binary mask [4].

Methods GNSDR GSIR GSAR
REPET-SIM [20] 2.83 4.55 9.82

RPCA [4] 3.32 5.41 9.20
RPCAs [19] 4.52 6.48 10.4

RAE 5.99 7.25 6.48

Table 1. Separation quality in dB for the music channel of
MIR-1K dataset. RPCAs is the RPCA with vocal/non-vocal
masks [19]. RAE is the proposed robust autoencoder.

4.2. Image denoising

Denoising one noisy image without information of any clean
images, is challenging. Given a noisy image X, our goal is to
represent the image using two disjoint parts, L and S. We aim
L to contain all the information relevant for the clean part,
and S to contain only the corrupted noise. This is a much
harder task than the traditional denoising task performed by
autoencoders [6] [8] [9] [12], since it has no separated training
process on clean images and thus requires the model be much
more robust to noise.

We analyzed 10 gray-scale images typically used to
benchmark image denoising methods. ”Salt and pepper”
noise is added to each image with a noise density = 0.1 and
0.2 (this effects 10% and 20% of pixels, respectively). Then
each corrupted image is used as the input to the proposed
model. By learning the optimization problem in (4), the pro-
posed model obtains the disentanglement of each corrupted
image X into two parts, low-rank component L and sparse
component S.

The key insight here which enables our disentanglement
is, natural images have regularities and can be effectively
compressed in low dimensions [21], while noise and out-
liers are often incompressible. Thus we expect the low-rank
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component L to capture the clean part of X and be similar
to the original clean image. The incompressible noise oc-
cupies only a fraction of images (10% or 20%) thus can be
effectively modeled by a sparse component S.

We use recovered peak signal-to-noise ratio (R-PSNR) to
measure the denoising performance. In particular, R-PSNR
is defined as: R-PSNR(L,X) = PSNR(L, I) − PSNR(X, I),
where I is one original image, X is the noisy image and L is
the denoised image. Higher values of R-PSNR indicate better
performance. Experimental results of the proposed model is
shown in Table 2, with comparisons against PCA and a stan-
dard autoencoder. It is easy to see the superior performance
of the proposed model thanks to its effective disentanglement.

Images σ = 0.1 σ = 0.2
PCA AE RAE PCA AE RAE

baboon 2.04 3.58 4.01 2.29 3.80 6.25
hill 2.60 3.49 11.55 2.65 3.51 12.60

barbara 2.46 3.38 6.82 2.52 3.70 6.89
boat 2.57 4.47 8.77 2.61 4.43 10.65

camera man 0.93 1.81 3.04 1.04 2.09 3.80
couple 2.61 5.79 9.58 2.62 6.39 7.85
house 0.95 3.57 10.94 1.05 3.19 7.35
lena 2.64 4.57 6.59 2.64 4.98 9.15
man 2.56 3.03 5.86 2.61 3.61 6.83

pepper 0.92 3.51 9.53 1.02 3.25 6.37

Table 2. Denoising results of PCA, autoencoder (AE) and the
proposed robust autoencoder (RAE), with the noise density σ
= 0.1 and 0.2. Performance is measured as R-PSNR in dB.

4.3. Video foreground separation

To further investigate the disentangle ability of the proposed
model, we apply it to the problem of foreground separation
in videos. The previous experiment of image denoising focus
on the low-rank component L, but here the object of inter-
est is the sparse component S. The observed video is formed
as a matrix X by vectorizing each frame and stacking them
column-wise. We assume the background in a video is static
and hence forms a low-rank component L, while the fore-
ground is a dynamic but sparse perturbation.

Two benchmark datasets [3], named Escalator and Shop-
pingMall, is used to evaluate the separation performance.
The Escalator dataset has 3417 frames at a resolution of
160×130, and the ShoppingMall dataset has 1286 frames at
320×256. The separated foreground of these two videos is
shown in Figure 2. As we can see, the proposed autoencoder
networks effectively separate out the dynamic but sparse
foreground, which is the pedestrians in ShoppingMall, the
moving escalator and one walking woman in Escalator.

The nonlinear property of the proposed model is demon-
strated with a comparison against RPCA. As shown in Fig-
ure 3, the proposed model produce a more stable foreground
separation than RPCA when the regularization parameter λ

(a) Original (b) Low-rank (c) Sparse

(d) Original (e) Low-rank (f) Sparse

Fig. 2. Foreground separation results of the proposed model.
(a)-(c) from Escalator video, and (d)-(f) from ShoppingMall.

varies. The λ of the proposed model varies from 0.1 to 30,
which is 300 times bigger, but still produces reasonably good
results. In contrast, the λ of RPCA varies from 0.001 to 0.03
(30 times), while its performance dramatically decreases.

(a) λ = 0.1 (b) λ = 0.4 (c) λ = 0.6 (d) λ = 0.8 (e) λ = 1

(f) λ = 10 (g) λ = 15 (h) λ = 20 (i) λ = 25 (j) λ = 30

(k) λ = 0.001 (l) λ = 0.005 (m) λ = 0.01 (n) λ = 0.02 (o) λ = 0.03

Fig. 3. Foreground separation results of the frame 1715 in
ShoppingMall. (a)-(j) are results of the proposed model with
varying values of λ. (k)-(o) are results from RPCA.

5. CONCLUSION

In this paper, we have shown how to disentangle the low-
rank component and the sparse component of a data matrix
using two autoencoders. The proposed model can be viewed
as a combination of RPCA and autoencoders, which seeks to
combine the best of ”both worlds”. It remains the nonlinear
capability as autoencoders, and at the same time be robust
to outliers and noise as RPCA. The advantages of the pro-
posed model have been demonstrated in three practical appli-
cations: music/voice separation, image denoising and video
foreground separation.
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