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ABSTRACT
The structured time series (STS) classification problem re-
quires the modeling of interweaved spatiotemporal depen-
dency. Most previous methods model these two depen-
dencies independently. Due to the complexity of the STS
data, we argue that a desirable method should be a holis-
tic framework that is adaptive and flexible. This motivates
us to design a deep neural network with such merits. In-
spired by the dual-stream hypothesis in neural science, we
propose a novel dual-stream framework for modeling the
interweaved spatiotemporal dependency, and develop a con-
volutional neural network within this framework that aims
to achieve high adaptability and flexibility in STS configura-
tions of sequential order and dependency range. Our model
is highly modularized and scalable, making it easy to be
adapted to specific tasks. The effectiveness of our model is
demonstrated through experiments on benchmark datasets for
skeleton based activity recognition.

Index Terms— time series, interweaving, dual stream

1. INTRODUCTION

Time series data are produced from a wide range of activi-
ties such as weather readings, stock prices and human mo-
tions. The observations in many types of time series data are
of high dimensional nature. For instance, the financial time
series usually include stocks of various companies, and in
vision, human actions can be represented as a concatenated
vector of skeletal joints’ locations. Multivariate time series
with explicit statistical dependencies among components are
known as structured time series (STS) [1].

Time series classification is the problem of categorizing
different time series into pre-defined classes. One impor-
tant aspect of STS classification is that the statistical depen-
dencies in the spatial and temporal domains are usually in-
tertwined. However, most previous methods model the spa-
tial and temporal dependencies independently. Furthermore,
these methods typically focus on improving individual steps
of the pipeline, e.g., explicitly modeling spatiotemporal in-
formation [2, 3, 4, 5], increasing sequential orders [2, 6, 7],
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and adjusting sequential dependency ranges [8, 9]. Due to the
complexity of the STS data, we argue that a desirable method
should be holistic, adaptive and flexible. This motivates us to
design a deep neural network (DNN) with such merits.

Inspired by the dual-stream neural processing hypothe-
sis of human visual neural system [10], we propose a dual-
stream convolutional neural network (CNN) (as shown in Fig-
ure 1). Instead of modeling the spatial and temporal depen-
dency independently, the dual-stream CNN explicitly mod-
els the interweaved spatiotemporal dependency in STS data
jointly, which is not the case for existing CNN methods of the
same name, e.g., [11]. The two streams have different empha-
sis, either the structural or temporal dependencies, and model
such dependencies at different scales. This endows our model
higher adaptability and flexibility in modeling the spatiotem-
poral relationships of input elements, compared to the single-
stream [2, 3, 4, 5] based methods. Specifically, a STS in-
stance is first transformed into a 3-rank tensor, with the three
dimensions correspond to the time steps, spatial structure and
descriptive features of each sample, respectively. The two
streams are implemented as CNN so that it is not limited to
forward or backward directions as typical sequential models,
e.g., recurrent neural networks (RNN) [12]. The dual-stream
CNN model is based on a set of dual-stream convolution ker-
nels, each formed as a tensor product of two 2D convolution
kernels, one on the time and feature axes (red side of STS
representation in Figure 1(a)), and one on the structure and
feature axes (green side in Figure 1(a)), and we refer to the
former as the temporal kernel and the latter as the structural
kernel. The convolutional kernels of the dual-stream CNN
model are organized into a hierarchical structure, namely, the
structural (temporal) kernels are organized into different lev-
els to represent features of different scales (ranges). We ap-
ply a gating module for kernels of different sequential depen-
dency ranges so the contributions of different feature ranges
can be determined adaptively in a data-driven fashion.

2. RELATED WORKS

Time series can be roughly categorized in terms of the obser-
vation dimensionality as the scalar (e.g., {(t1, 0.1), (t2, 0.6),
. . . , (tn, 0.3)}) or the multivariate time series (e.g., {(t1,<0.1,
0.3, 0.3>), (t2, <0.2, 0.5, 0.1>), . . . , (tn, <0.8, 0.9, 0.6>)}).
The difference between STS and these two types lies not only
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Fig. 1. (a) The STS representation is a tensor with three dimen-
sions, which is formed in two steps. We represent each dimension at
each time step as a feature vector, and concatenate them according
to the dimension and time order. (b) Module diagram. The red and
green blocks represent the temporal and structural stream, respec-
tively. L/M/HFE mean the low/medium/high-level feature extractor,
and the prefixes of MFE, S/M/L, mean the short/medium/long range.
ZI means the zoom-in module, and SE means the encoder shared by
M-MFE and L-MFE. GT and CLS represent the gating and classifi-
cation module, respectively. See texts for details.

in its higher observation dimensionality, but also in a key as-
sumption, i.e., there are strong statistical dependencies among
the components of each time step. For instance, in skeleton
based activity recognition, the components of STS correspond
to the joint locations, which can be represented as a tree struc-
ture, e.g., (ti, <d1, d2 → d1, d3 → d1, d4 → d2, . . .>),
where → pointing from the children to its parent reveals the
tree structure. The spatial/temporal variation of a limb joint is
constrained by its parent in the tree.

Classifying STS thus has to take into consideration such
intertwining dependencies intra and inter time steps. Previ-
ous STS classification methods [13] focus on finding effective
hand-crafted features for classification. Most recent works
have shifted to deep learning methods, and design DNNs for
learning discriminative features automatically. Existing DNN
based methods can be roughly divided into three categories.
Integration of Spatial and Temporal Information. [3] in-
corporated the LSTM with both the spatial and temporal at-
tention mechanisms to adaptively select the discriminative di-
mensions and time steps for classification. [5] adopted the
bilinear classifiers to identify both key time steps and dimen-
sions. [4] formulated the STS as two sequences along the
spatial and temporal axes, respectively, and used a two-stream
RNN to model these two sequences. A common drawback of
these works is that they assume independence between the
structural and temporal information in STS.
Sequential Orders. STS instances satisfy the temporal
causality, i.e., the observation at the current time step de-
pends on those of the previous time steps, or the other way
around. Thus, [6] used a bidirectional RNN structure to
model STS. The components of each observation at a time
step can be represented by a tree structure. By traversing

the tree bidirectionally using the depth-first search, the STS
data can also be represented as a sequence spatially. [7] de-
veloped the spatiotemporal RNN for modeling such a spatial
sequential order as an addition to the temporal sequential
order.
Sequential Dependency Ranges. The range of temporal de-
pendency is an important factor in modeling STS. This is
commonly modeled using RNN with long-short term mem-
ory (LSTM) [14], in which the range is determined by the
cooperation of the memory cell and several modulative gates.
However, the capability of such an adaptive modeling would
be overstretched given the high complexity of the STS data.
To this end, several works explored to model the dependency
ranges in a more controllable fashion. For example, [9] in-
corporated the LSTM with multi-scale temporal sliding win-
dows, so as to explicitly control the dependency ranges. [8]
represented the STS data as 2D clips, and used the CNN to
capture the long-range dependencies.

3. DUAL-STREAM FORMULATION WITH CNN

The temporal and structural dependency are important pat-
terns for STS classification. The temporal dependency is
commonly modeled with a chain structure that goes in for-
ward or backward direction, such as in RNN. This is based on
the sequential causality assumption that the intrinsic temporal
dependency of a sequence along the time axis.

However, the sequential causality assumption does not al-
ways hold, as suggested by the indefinite causal order the-
ory in quantum mechanics [15], i.e., the causality order does
not always obey a specific element permutation, but a mix-
ture of multiple permutations. We refer to such a problem as
the indefinite order problem, which contradicts the sequen-
tial causality assumption made by RNN. In particular, for a
RNN, long-range dependencies between two distant elements
in a sequence might be affected by many other irrelevant ele-
ments on the long path through the chain. It is also hard for
RNNs to accommodate such “indefinite” permutations on the
fly due to the indifferentiability of permuting operations.

Mitigating the long-range dependency modeling problem
and indefinite order problem requires us to avoid using the
chain structure but to create a STS classification model that is
more flexible and adaptive, and to reduce the impacts caused
by different element positions in a sequence. In this work, we
model the sequential order of STS using the multi-layer CNN,
which creates hierarchical representations over the input STS
in which the dependencies of nearby elements are modeled by
lower layers while those of distant elements are modeled by
higher layers. The replacement of RNN with CNN alleviates
the two aforementioned problems, as the sequential depen-
dency modeling is no longer strictly limited by a sequential
order or a chain structure, but directly handled by the multi-
scale receptive fields of CNN. In the following, we describe
the overall processing steps, starting with an augmented STS
representation and then on the structure of the model itself.
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Fig. 2. The network structure of a single stream of our model.

3.1. STS Representation
We first augment the original STS data with empirical hand-
crafted features before the feature learning process to form
a rank-3 tensor Rd,t,f and Rt,d,f as follows. Given a STS
{(ti, < d1, d2 → d1, d3 → d1, d4 → d2, . . . >)}ni=1 with
each dimension being a point dj = (xj1, x

j
2, . . . , x

j
l ) in the l

dimensional space, we follow [16, 17] to extract four types
of features for each dimension dj at each time step ti, and
concatenate them to form a feature vector htidj

: (1) Position.
xj1, x

j
2, . . . , x

j
l are concatenated to form a l dimensional fea-

ture vector; (2) Angles. Given multiple edges {ejk}dk∈ℵj con-
necting dj and its neighboring dimensions ℵj in the tree, we
compute the normalized pairwise angles between these edges;
(3) Offset. Offsets of elements in dj between ti and ti−1 are
computed and concatenated to form a l dimensional feature
vector. (4) Distance. We calculate the pairwise distance be-
tween dj and the mean position of all dimensions at ti.

Then, we pad the extracted features to be equal in length,
and concatenate the extracted features to form the STS rep-
resentation, i.e., Rt,d,f = (ht1dj

, ht2dj
, . . . , htndj

)mj=1; similarly,
we have Rd,t,f = (htid1

, htid2
, . . . , htidm

)ni=1 which is a trans-
pose of Rt,d,f . The order of the STS dimensions in Rt,d,f is
determined by the traversing algorithm [7] starting from d1.

3.2. Model Structure
The temporal and structural streams in the dual-stream CNN
model share similar structures. Each stream focuses on a dis-
tinct aspect of the spatiotemporal structure in the STS, which
is reflected by different parameterization strategy. Given a
STS in the tensor representation described previously, we pro-
cess the 2D slices constituted by the time and feature elements
of the STS tensor with the temporal stream CNN, and pro-
cess the 2D slices constituted by the structure and feature ele-
ments of the STS tensor with the structural stream CNN. For
the temporal stream, the convolutional computation (param-
eterized) on the time and feature axes captures the temporal
dependencies, while the spatial dependencies are captured by

the addition computation (non-parameterized). The case is
reversed for the structural stream. This different character-
istics of the two streams suggest that the dual-stream design
cannot be simply replaced by a single-stream 3D-CNN. For
the choice of the convolutional kernels, we use the 2D ker-
nel rather than using the 3D one. This is because 2D kernel
performs the fully connected (shared weight for 3D kernel)
computation along the time or structure axis, which makes it
beneficial for modeling the long-range dependencies.

The preprocessed STS features are fed for feature learn-
ing. The adaptive selection of sequential dependency range is
important to STS classification, so we fuse the adaptive learn-
ing of the sequential dependency range into the feature learn-
ing process. There are ten building blocks within our model as
shown in Figure 2, including low/medium/high-level feature
extractor (L/M/HFE), two zoom-in modules (ZI), a shared en-
coder (SE), a gating module (GT) and a classification mod-
ule (CLS). The MFE is composed of three sub-blocks, i.e.,
short/medium/long-range MFE.

As shown in Figure 2, we decompose the feature learning
process into three stages, i.e., low/medium/high-level feature
extractors (L/M/HFE). The low-level features keep more de-
tails of the original input STS data, while the high-level fea-
tures are more conceptual which are used for classification
directly. The medium-level features bridge the low-level and
the high-level features, so it determines the reliability and the
meaningfulness of the high-level features.
LFE consists of a conv layer with kernel size 7 and the batch
normalization (BN) followed by a leaky relu (LReLu). We
chose a large kernel size because the consecutive elements in
a sequence may contain much redundancy. We use LReLu as
the nonlinearity because it does not gate the negative values
in the STS representation.
MFE plays the key role in feature learning, so its architec-
ture is the most complicated. MFE is decomposed into three
sub-stages with each focusing on a specific sequential depen-
dency range corresponding to the short/medium/long-range
MFE (denoted as S/M/L-MFE). The MFEs for different de-
pendency ranges are connected by zoom-in (ZI) modules and
shared encoders (SE). ZI is implemented as a max pooling
layer, and SE is a block shared by the M-MFE and L-MFE.
Since the space covered by L-MFE is larger than that of
short/medium-range MFEs, we further split L-MFE into four
finer scales similarly to the inception module in [18].
GT is posed as the backend of S/M/L-MFE which adaptively
determines the contribution of each sequential dependency
range to the high-level features. We implement the gating
module as the gated linear unit (GatedLu) [19] over the out-
put of the convolution Y = [A B] ∈ Rw,h,2c, v([A B]) =
A ⊗ σ(B), where A,B ∈ Rw,h,c are the inputs to the non-
linearity, ⊗ is the point-wise multiplication and the output
v([A B]) ∈ Rw,h,c is half size the size of Y . The gates σ(B)
(implemented as the sigmoid) determine the importance of
inputs A for learning the high-level features.
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HFE is formed with a fully connected layer (FC) which takes
the flattened and concatenated medium-level features output
by S/M/L-MFE, and outputs a 500 dimensional vector.
Classification. The extracted high-level features are fed into
a softmax layer to obtain the probability distributions, which
are used to compute the negative log-likelihood loss, L =
−
∑

i y
′
i log(yi), where yi is the probability distribution out-

put of an input STS by the softmax layer, and y′ is its corre-
sponding ground truth one-hot vector representation.

4. EXPERIMENTS

Experimental Settings. We evaluate the dual-stream CNN
model on the STS data from three skeleton based activ-
ity recognition benchmark datasets: MSR Action3D [20],
CharLearn Italian [21] and 3D-SAR-140 [17]. Our method
is implemented using Python and TensorFlow1, and all ex-
periments are conducted on four machines on each of which
an NVIDIA TITAN X GPU with 12GB onboard memory is
installed. The overall objective function is minimized using
back-propagation implemented with the ADAM algorithm
[22]. We train the network using mini-batch gradient de-
scent, and set learning rate, momentum and decay rate as
1× 10−3, 0.9, 0.999. As usual, we scale the input to be equal
in temporal length, so as to enable the mini-batch processing.
Compared Methods. We compared our method against 10
existing methods, i.e., RR [23], HBRNN-L [6], CHARM
[24], DBN-HMM [25], Lie-group [26], HOD [27], MP [28],
SSS [29], HBRNN-L-T [17] and URNN-2L-T [17].
MSR Action3D. This dataset consists of 20 actions per-
formed by 10 subjects for two or three times, 544 valid
samples with 21, 462 frames. We follow the experimental
protocol presented in [30] on this dataset, which is the most
challenging protocol for this dataset. Half of actor subjects
are used for training and the rest are used for test. Note that
the average number of training samples per class is nearly
14, which is quite limited for training deep neural networks,
and poses great potential risks on the overfitting issue. The
comparison on MSR Action3D in Table 1 demonstrates the
good generalization capability of our method.
CharLearn Italian. This dataset captures 20 Italian cul-
tural signs, and contains 393 labeled sequences with a total of
7, 754 gesture instances. We follow the experimental protocol
in [25]: 350 sequences for training and the rest 43 sequences
for testing. The recognition of sign languages requires the
fine-grained recognition ability of the evaluated methods, and
always desire the careful feature representation design. As
shown by the comparison on CharLearn Italian in Table 1,
our method constantly outperforms the evaluated methods
without designing any special features for this dataset.
3D-SAR-140. This dataset [17] contains 140 diverse action
classes. It is challenging due to two factors: (1) a large va-
riety of movements in various contexts are included, where
fine-grained recognition is required; (2) sequence length for

1https://github.com/SCWengTJU/DualStreamCNN

Table 1. Classification accuracy.

Methods MSR Action3D ChaLearn 3D-SAR-140
RR 0.891 0.438 0.723
HBRNN-L 0.897 0.559 0.604
CHARM 0.747 0.476 0.618
DBN-HMM 0.735 0.628 0.601
Lie-group 0.866 0.401 0.745
HOD 0.844 0.539 0.657
MP 0.909 0.452 0.203
SSS 0.560 0.413 0.253
HBRNN-L-T 0.915 0.673 0.756
URNN-2L-T 0.931 0.753 0.892
Ours	 gating module 0.947 0.766 0.864
Ours	 structural stream 0.848 0.677 0.814
Ours	 temporal stream 0.934 0.729 0.889
Ours 0.963 0.772 0.896

individual actions varies significantly (ranging from 5 to 800
frames), which poses the challenges on the adaptive configu-
ration of the sequential dependency range. Notably, URNN-
2L-T is designed to recognize fine-grained actions and large-
scale dataset. However, our method still performs slightly
better than URNN-2L-T. The good performance also demon-
strates our method’s effectiveness in adaptively configuring
the sequential dependency ranges.
Ablation Study. We evaluate three components in our
method, i.e., the gating module, structural stream and tem-
poral stream. We disable these components one by one and
conduct the evaluation. Table 1 shows the comparison results,
and it clearly shows that each of these three components is
beneficial for the generalization. Generally speaking, the de-
scending order of their influences is structural stream, gating
module and temporal stream. An interesting phenomenon is
that the structural stream seems to have more important effect
than the temporal stream in the final classification perfor-
mance, which accords with the theory of dual-stream hypoth-
esis in neural science. This strengthens the reasonability of
our inspiration drawn from the dual-stream hypothesis, and
further shows the necessity of interweaving spatiotemporal
modeling for STS classification.

5. CONCLUSION

We propose a novel dual-stream framework for modeling
the interweaved spatiotemporal dependency, and develop a
CNN within this framework that achieves high adaptability
and flexibility in STS configurations of the sequential order
and dependency range. Our model is highly modularized and
scalable, making it easy to be adapted to specific tasks. The
effectiveness of our model is demonstrated through experi-
ments on activity recognition benchmark datasets.
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