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ABSTRACT

We propose a deep learning architecture capable of per-
forming up to 8x single image super-resolution. Our ar-
chitecture incorporates an adversarial component from the
super-resolution generative adversarial networks (SRGANs)
and a multi-scale learning component from the multiple scale
super-resolution network (MSSRNet), which only together
can recover smaller structures inherent in satellite images.
To further enhance our performance, we integrate progres-
sive growing and training to our network. This, aided by
feed forwarding connections in the network to move along
and enrich information from previous inputs, produces super-
resolved images at scaling factors of 2, 4, and 8. To ensure
and enhance the stability of GANs, we employ Wasserstein
GANs (WGANs) during training. Experimentally, we find
that our architecture can recover small objects in satellite
images during super-resolution whereas previous methods
cannot.

Index Terms— super-resolution, remote sensing data,
GANs, dilated convolutions

1. INTRODUCTION

Single image super-resolution (SISR) is the task of recover-
ing a high resolution (HR) output from a low resolution (LR)
input. Due to the improvement in hardware and availability of
large data sets, SISR using deep learning is becoming increas-
ingly popular in the computer vision community. Although
[1, 2, 3, 4, 5] have led to remarkable results in 4x super-
resolution of generic imagery, little work has been performed
on remote sensing data. With the release of massive satellite
imagery data sets such as SpaceNet [6] and the Functional
Map of the World (fMoW) [7], it has become increasingly es-
sential to explore how state-of-the-art SISR methods can be
effectively applied to these data. With super-resolved satellite
imagery, many remote sensing tasks such as detecting defor-
estation, or spotting undeclared nuclear power plants, would
become more feasible.

A major difficulty in remote sensing applications is that
different satellites capture images at varying temporal and
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spatial resolution. For example, WorldView-3 (WV3) cap-
tures images infrequently, with a re-visit period, or time
elapsed between two successive views of the same area, of
about 4.5 days [8], whereas PlanetScope (PS) has a re-visit
period of less than a day [9]. However, WV3 has a spatial
resolution of 30-cm/pixel, whereas PS has a spatial resolution
of 3-m/pixel. Consequently, we are interested in the task of
processing PS data based on learned models to artificially
increase their spatial resolution, achieving high spatial and
temporal resolution simultaneously. With this processed data,
detection of small variations over time is possible, which is
required for remote sensing applications such as those previ-
ously mentioned. The purpose of this work is to introduce a
deep neural network architecture that leverages and improves
on recent developments in super-resolution [2, 3] and training
GANs [10, 11], resulting in a super-resolution method capa-
ble of capturing the finer details required for satellite imagery.

2. BACKGROUND AND RELATED WORKS

2.1. Super-Resolution with Deep Learning

In 2014, Dong et al. [1] introduced super-resolution con-
volutional neural networks (SRCNN), a method that closely
followed the operations of traditional sparse-coding-based
methods for super-resolution. Since then, several deep learn-
ing super-resolution methods have extended this idea. Yu and
Porikli [12] applied GANs to perform 8x super-resolution
on a dataset of faces using a standard pixel-wise loss func-
tion. Super-resolution GANs (SRGANs), proposed by Ledig
et al. [2], applies both perceptual loss and GANs to super-
resolution to gain a state-of-the-art performance over SR-
CNN. Perceptual loss is a dissimilarity metric computed by
feeding the super-resolved image and the ground truth im-
age independently into a pre-trained network and comparing
their respective outputs with a standard metric such as the
l2 distance. Also, a new architecture for super-resolution
called SRResNet that uses residuals connections is intro-
duced. Dahl et al. combined a conditioning network and a
prior network to develop pixel recursive super-resolution [4].
The conditioning network makes a prediction on the current
pixel by using information from the LR image. The prior
network follows from PixelCNN [13] and predicts the next
pixel based on every other pixel that has already been gener-
ated. These two predictions are combined to produce the final
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value for the current pixel. This is repeated until the entire
HR image is generated. Shi et al. proposed the multiple scale
super-resolution network (MSSRNet) [3] which uses dilated
convolution inception modules. In [14], a discrete dilated
convolution ∗l with dilation factor l is defined as:

(F ∗l k)[p] = σ

 ∑
s+lt=p

F (s)k(t)

 , (1)

where F : Z2 −→ R is a discrete signal, Ωr = [−r, r]2 ∩
Z2, k : Ωr −→ R is a discrete filter of size (2r + 1)2, and σ
is a nonlinear activation function. It is noted that a traditional
convolution operation is a dilated convolution with l = 1.
These modules take multiple dilated convolution operations
with different values of l on the same input to produce mul-
tiple feature maps. These feature maps are then concatenated
before being fed into the next layer. With these modules, their
architecture concurrently learns features that promote scale-
invariance.

2.2. Generative Adversarial Networks

In GANs [15], G and D are two neural networks simultane-
ously trained with opposing objectives, shown in Eq. (2).

min
G

max
D

Ex̃∼PG
[log(1−D(x̃))] + Ex∼PR

[log(D(x))] (2)

The generator G(·) creates tentative samples from random
noise. The objective of G(·) is to output samples x̃ with
the same statistics as xR. To adapt the generator to super-
resolution, SRGANs inputs a downsampled x and super-
resolves that image to produce x̃. The discriminator D(·)
aims to correctly differentiate between x̃ and xR. By al-
ternating updates of the parameters of each network, both
networks incrementally improve in performance. In [10],
Arjovsky et al. argue that the original GANs formulation ex-
hibits instability during training, and use of the Wasserstein
distance to derive the loss function alleviates this problem.
This resulted in WGANs, which has demonstrated improved
performance and more stable training. Additionally, Kar-
ras et al. introduced progressive growing of GANs [11] to
guide the generation of images. The idea behind progressive
growing is that intermediate layers of the generator should
produce tentative images at lower resolution, while the dis-
criminator should be learning to distinguish between these
lower resolution images and the downsampled training data.
To achieve this, they propose an incremental addition of lay-
ers to the generator and discriminator while increasing the
resolution of the output. At each increment, both networks
are optimized. Using progressive growing ensures that each
successive set of layers in the generator provides meaningful
intermediate outputs, whereas traditional methods just train
the whole network.

Our contribution: The purpose of this work is to demon-
strate that SISR can be applied to upscale satellite images by
a factor of 8, which is a step towards performing the 10x
super-resolution required for the disparity in spatial resolu-
tion between the PS and WV3 satellites. Our experiments

demonstrate the shortcomings of SRGANs and MSSRNet in
that they cannot recover smaller objects in satellite imagery.
We propose an amalgamation of the two architectures by re-
placing the convolutions in SRGANs with dilated convolution
modules. To further enhance the quality of our images, we
follow progressive growing of GANs by splitting our super-
resolution task into three separate upscaling stages. Lastly,
we carry forward all previous inputs and concatenate them to
the input of future stages. Theoretically, this augments the in-
formation space of successive information inputs. Intuitively,
this gives future stages nonlinear and rich information that
may have been lost in previous layers. To secure improved
training stability for our increased upscaling factor, we opted
to use WGANs over GANs for its better numerical behavior.
With WGANs, we also propose using a tanh (·) activation
on the discriminator output to make the adversarial loss scale
properly with the content loss.

3. A NEW APPROACH TO SISR

Fig. 1. a) A diagram of the super-resolution system. We denote
G(i)(X̂i−1) as X̃i. Dotted lines: backpropagation, Solid lines: for-
ward pass. b) G(1)(·) decomposed into C(·), F (·), and PS2(·).

3.1. Generator and Discriminator Architecture

While most previous methods perform 4x super-resolution,
we propose a deep learning architecture that is better suited
for 8x super-resolution on satellite imagery. Our proposed
framework is shown at a high level in Fig. 1a. AllG(i) blocks
are functions that super-resolve inputs by a factor of 2. All
D(i) blocks seek to differentiate between the original higher
resolution image and the super-resolved image. These blocks
are modeled by neural networks. The MSE blocks represent
the mean squared error between two inputs. Xu denotes the
original image data of differing resolution determined by u.
X̂v is the concatenation of all previous inputs, i.e. X̂1 =

[X̃1, X0] and X̂2 = [X̃2, X1].
Inspired by progressive training, we structured our gener-

ator training into three different stages, each upsampling by
a factor of 2. The first stage parameters are trained to op-
timality and kept constant while training the second stage.
Then, the first and second stage parameters are kept constant
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to train the third stage. In Fig. 1b, we decomposed G(1)(·)
into multiple operations denoted by C(·), F (·), and PS2(·).
C(·) is a single convolutional layer given by Eq. (1) with
l = 1 that acts as regularization for X0 and outputs Xt

0. F (·)
is a series of dilated convolutions modules with residual con-
nections performed on Xt

0. A dilated convolution module is
the concatenation of a series of dilated convolutions, defined
by Eq. (1), with different l, followed by an additional con-
volution operation. We use F (·) to learn information about
Xt

0 necessary for super-resolution. Subsequently, Xt
0 and the

output of F (·) are summed to generate X0. From the spec-
tral view point, LR images lack high-frequency components,
corresponding to lower spatial sampling distance in a high-
resolution image. The low-frequency components are further
distorted due to the aliasing effect. Accordingly, the mech-
anism of deep CNNs is naturally appealing for the purpose
of super-resolution as illustrated by the spectral study of the
signal evolution over the forward path: the nonlinear func-
tion in Eq. (1) creates high-frequency components, which
are further processed by a collection of filters in each layer,
re-identifying the distorted spectrum by the aliasing effect.
Employing dilated filters further provides a means of control-
ling the filters band width, pertaining to the multi-scale nature
of our architecture. Unlike conventional signal processing ap-
proaches, the process of backpropagation in deep learning en-
ables us to adjust the shape and spectral location of the filters
in a supervised manner, based on the training data, leading to
a highly adaptive multi-scale approach.

PS2(·) is the pixel shuffler [5] operation, a learned inter-
polator, with an upscaling factor of 2. It is defined by:

Y [i, j] =
∑

a∈{0,1},b∈{0,1}

(F ∗1 k(ab))
[
i+ a

2
,
j + b

2

]
, (3)

where Y is a discrete signal, and hence Y [o, p] = 0 for o, p 6∈
Z+. As noted in [16] and [17], feed forwarding the outputs
of previous layers is effective because it increases accessi-
ble information and aides in mitigating vanishing gradients
in deep networks. By concatenating successive stage inputs,
our network achieves a dense set of nonlinear features. This
ensures the persistent presence of nonlinearities at all scales,
and therefore better fits all SR detailed features.

The discriminator D(·) clearly plays a critical role in
the adaptivity of each scale-specific stage, and the desirable
smoothness properties were investigated in [10]. Specifically,
a Wasserstein-metric-based criterion was shown to be more
adapted for GANs. This also yielded a markedly improved
performance. Our proposed generator, shown in Fig. 2, uti-
lizes one separate discriminator per stage, each including
seven associated convolution layers and a fully connected
layer.

In contrast to SRGANs, we adopt a more flexible loss
function allowing for the use of multiple content losses. The
overall loss is given by:

lSR =

n∑
k=1

αkl
SR
Ck

+ βlSR
adv, (4)

Fig. 2. The generator network for our proposed method.

where lSR
Ci

denotes a content loss (MSE or perceptual loss)
and lSR

adv refers to the adversarial loss given by the discrimina-
tor. In our case, we use n = 2, with lSR

C1
being the perceptual

loss [19] adapted from SRGANs and lSR
C2

being the MSE loss.
The perceptual loss is computed by:

lSR
C1

=
1

Wq,rHq,r

Wq,r∑
a=1

Hq,r∑
b=1

(φq,r(Xi)a,b

−φi,j(G(i)(X̂i−1))a,b)
2,

(5)

where φq,r is the qth convolution after the rth max-
pooling layer in a pre-trained VGG-19 [20] network. In our
case, we used q = 0 and r = 5. Wq,r and Hq,r represent the
width and height of the feature maps.

WGANs is used for the adversarial loss. In our experi-
ments, and supported by [21], we found that using the gradi-
ent penalty in [22] led to poorer super-resolved images. In-
stead, we follow the original WGANs implementation and
clip the weights of our discriminator to [-0.01, 0.01] to en-
force the 1-Lipschitz constraint. The WGANs loss is given
by:

lWGANs = Ex̃∼Pg
[D(x̃)]− Ex∼Pr

[D(x)], (6)

where Pg is the generated image distribution, Pr is the HR
image distribution, and D(·) is a 1-Lipschitz function.

A problem with directly applying WGANs to SRGANs
is that the discriminator is not bounded to [0,1]. To alleviate
the potential of the adversarial loss overwhelming the content
loss, we use the tanh (·) activation on the discriminator out-
put and thus bound the former loss. The new formulation for
the super-resolution adversarial loss thus becomes:

lSR
adv = EX̃∼Pg

[σ(D(X̃))]− EX∼Pr
[σ(D(X))], (7)

where σ(·) is tanh(·).
The loss we use for our training is given by lSR =

α1l
SR
C1

+ α2l
SR
C2

+ βlSR
adv , where α1, α2, and β are tuned

parameters dependent on the data set.

4. EXPERIMENTS

In our experiments, we compare our proposed method to SR-
GANs and MSSRNet. All methods were implemented in Ten-
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Fig. 3. Sample images from both WV3 images (top) and CelebA images (bottom). Perceptually, we observe that our method better captures
the smaller structures such as the cars, indicated by boxes, in WV3 data and teeth/eyes in CelebA data. See [18] for source code and samples.

sorLayer, a wrapper for TensorFlow [23]. We slightly modi-
fied the hyper-parameters that weight the effect of the gener-
ator loss to better match the remote sensing content loss.

4.1. Datasets and Evaluation Metrics

We use the benchmark dataset CelebA [24], a collection of
celebrity faces, as the initial test for our method, demonstrat-
ing its effectiveness on generic imagery. We also use HR re-
mote sensing data collected from Digital Globe’s WorldView-
3 (WV3) satellites (partially taken from SpaceNet [6]) to
showcase our intended application. The HR training data are
downsampled to the appropriate sizes to train each stage of
the generator. The peak signal-to-noise ratio (PSNR) and
structural similarity (SSIM) [25], two metrics used for image
reconstruction quality, are computed to evaluate the perfor-
mance of each method on both data sets. Since SRGANs and
MSSRNet have already been shown to outperform bi-cubic
interpolations and SRCNN [2, 3], we omit them from our
comparison.

4.2. Training Details and Results

All of the networks are trained using an NVIDIA Tesla P100
GPU using a training split of a given data set. For CelebA, we

Method CelebA WorldView-3
PSNR SSIM PSNR SSIM

SRGANs 22.612 0.6974 22.744 0.4332
MSSRNet 19.522 0.4625 19.243 0.2445

Our Method 23.113 0.7189 22.931 0.4564

Table 1. Peak signal-to-noise ratio and structural similarity of
methods using 20,000 CelebA samples and 3,000 WV3 samples.

take a random subset of 50,000 images for training. We start
with 128x128 HR images for the face data set and downsam-
ple them to 16x16 for our training set. We have also experi-
mented with remote sensing WV3 data using 10,000 images.
Starting with 320x320 HR image patches, we downsample
them to 40x40 images for training. As previously mentioned,
we use a VGG-19 network previously trained on ImageNet
for the perceptual loss. We use α1 = 10−8, α2 = .8, and
β = 10−4 for CelebA data and α1 = 3x10−8, α2 = .6, and
β = 3x10−4 for WV3 data. We show the PSNR and SSIM in
Table 1. Moreover, sample results from our experiments are
presented in Fig. 3. Our method achieved the highest PSNR
and SSIM for both data sets. Visually, our method better re-
covers smaller objects, such as vehicles in satellite images and
eyes/teeth in faces.

5. DISCUSSION

When downsampling satellite images by 8x, humans can still
identify buildings and larger objects, but smaller objects com-
pletely lose their structure. However, given the correct con-
text, such as the place appearing to be a parking lot, humans
can infer that a few pixels should form a car. Prior SR work
has been primarily successful at the higher scale object level,
but limited at smaller scale object recovery. Our proposed ar-
chitecture has demonstrated the ability to produce small ob-
jects such as cars given ambiguous pixels, showing charac-
teristics that may be similar to human contextual information.
Future work will focus on further studying the role that in-
termediate feature maps play in providing context for HR de-
tails. Other research questions we will address include the
quantification of the data quality propagation, so we can se-
lectively modulate less important stages to reduce the number
of parameters and improve computational efficiency.
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