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ABSTRACT
Feature selection is one of the most important and widely-used
dimension reduction techniques due to its efficiency and in-
tractability of the results. In this paper, we propose a simple but
efficient unsupervised feature ranking and selection method
by exploiting the geometry of the original feature space us-
ing AutoEncoders. Average reconstruction error of training
samples by ignoring features, one at time, and the contribution
of feature in the latent space (bottleneck of the auto-encoder)
are proposed as two useful measures for ranking the features.
The proposed method is evaluated for three different tasks: (1)
feature selection, (2) discovering image interest points, and (3)
extracting important blocks of an images Result on standard
benchmarks confirm that the performance of our method is
better than state-of-the-art methods.

Index Terms— Feature selection, ranking, auto-encoder.

1. INTRODUCTION
Performance of machine learning algorithms, especially for
classification and clustering tasks, is highly depended on how
they are equipped or provided with a low dimensional repre-
sentation of raw data. To simplify models, facilitate easier
interpretations, reduce training time, avoid the curse of dimen-
sionallity, and refrain from over-fitting, the input raw data must
be described by a discriminative feature set. Often this proce-
dure is referred to as feature (or variable) selection [1]. With
regards to the availability of labels, feature selection techniques
can be divided into two main categories: supervised and unsu-
pervised methods. Supervised algorithms [2, 3, 4, 5] benefit
from available labels to select discriminative features that clas-
sify the samples according to the class labels. However, with
the increasing number of data samples generated with many
different types, labeling them all is a cumbersome and an ex-
pensive task. Consequently, unsupervised methods have been
heavily researched in different fields [6, 7, 8, 9]. Without label
information to define feature relevance, a number of alternative
criteria have been proposed for unsupervised feature selection.
One commonly used criterion is to select features that can
preserve the data similarity or manifold structure constructed
from the whole feature space [7, 4]. In recent years, applying
sparse learning for unsupervised feature selection has attracted
increasing attention. These methods usually generate cluster
labels via clustering algorithms and then transform unsuper-
vised feature selection to sparse learning based supervised
feature selection with these generated cluster labels. Some

 

 

 

  

Fig. 1. Examples of three images with ranked pixels using our
approach. The (red) color indicates the importance and the
tone relates to its importance.

of these methods are Multi-cluster feature selection (MCFS)
[10], Nonnegative Discriminative Feature Selection (NDFS)
[11], and Robust Unsupervised Feature Selection (RUFS) [12].
Unlike supervised methods, all these approaches assume there
is no class label associated with the training samples. In this
paper, we explore the ability to reconstruct samples and the
correlation between features, as these are two important crite-
ria to select a discriminiative non-redundant subset of features.
Principal Component Analysis (PCA) and Auto-Encoder (AE)
[13], which are good tools for exploiting the former two crite-
ria, are widely exploited for learning discriminative features
(in unsupervised settings) from the raw data (e.g., in [14]).
These methods provide a low dimension representation of the
raw data. Albeit extracted features by PCA and AE efficiently
contribute to building different machine learning models, but
these methods often lose the relevant information about the
original feature space and importance and relevance of features
may not be identified by these methods [15]. Furthermore, in
many applications (such as many image processing or medical
use cases), a set of predetermined features are at hand and
identifying a compact set of important and relevant ones is
crucial for understanding the underlying reasons and causation
of the results. Although previous feature selection methods
(including the ones described above based on sparse learning)
have interpertable results, they suffer from several weaknesses:
(1) Their performance results are often not comparable to those
of PCA or AE, i.e., transforming the feature space to a lower
dimensional space works better than solely selecting feature
subsets; (2) These methods are often unable to rank features
based on their importance, and often. In this paper, we pro-
pose a feature ranking and selection strategy based on AEs. As
mentioned earlier, AEs are popular tools for feature learning
by providing an informative representation of samples (in a
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Fig. 2. Let X be the input feature vector, in which ith feature
(i.e., Fi) is set to zero. (Left): The reconstruction error Si

on a learned AE can measure the importance of Fi. (Righ):
Summation of connected weights (from input to hidden layer)
to ith features can also measure the importance of Fi.

latent space) with respect to minimizing the reconstruction
error. Two main criteria is used to rank the features and iden-
tify their importance. First, we look at the contribution of
each input feature in forming the latent space (defined by the
AE network weights initiate from that feature). Second, we
propose a procedure to identify how ignoring each feature may
affect the reconstruction loss of the AE. We iteratively zero
out each feature, one at a time, and if a high loss is imposed
for the reconstruction, that feature is deemed as informative
and important. Fig. 1 shows the output of our method for
ranking of image pixels. Based on these two intuitions, the
main contribution of this paper are two folds:(1)Two new mea-
sures are proposed for feature selection. We show that their
combination leads to the state-of-the-art result (2) Our method
can efficiently find image interest-point (and blocks).

2. PROPOSED METHOD
Auto-encoders (AEs) are simple but efficient means of repre-
senting samples in lower dimensions [13]. They are optimized
to learn an efficient representationR in their bottleneck with
minimum loss of information, i.e., with a good representation
learned; the original input can be reconstructed from this latent
representation with minimum error. Using this characteristic
of auto-encoders, we propose a method for feature selection
with two intuitions: (1)R is an informative representation of
its input, therefore, the features contributing the most on re-
construction of the original input fromR are more important;
and (2) The overall reconstruction error of the AE in absence
of any specific feature is a very good indication of feature
importance. If this error is low, we can conclude that specific
feature is not of great importance for representing the sample
or may be highly correlated with other present features.

Based on these intuitions, our proposed method uses the
structure of AEs to rank features reflecting on their importance.
Fig. 2 shows a sketch of our method. Building on top of this
method, we generalize our method for detecting informative
(important) pixels and blocks in images.
2.1. Ranking based on AE
Let X1×n = {F1, · · · , Fn} be the raw data, represented by n
features. The goal is to find a procedureP to select informative

Algorithm 1: Unsupervised Feature Selection.
Input: Feature set {F1, · · · , Fn}, {Xj ∈ R1×n}j=N

j=1

Output: K most discriminative feature Learn W1 and
W2 by optimizing A on {Xj ∈ R1×n}j=N

j=1

while i ≤< N do
i++
Si = 1

N

∑
||Ai(Xj)−X||2

j=N

j=1

end

Z = argminz(1−
∑j=z

j=1 Sj∑i=N
i=1 Si

> 0.9)

F :=Sort features based on Si
F ′ := Z first elements of F .
for Fi ∈ F ′ do

WFi =
∑j=H

j=1 W
(i,j)
2

end
F” =Sort features based on WF

K =Select K first features F”

subset of X such as X ′ = {F ′1, · · · , F ′m}&(m ≤ n− 1) that
can be used for any subsequent procedure such as clustering
or classification. For this purpose, we learn an AE A on the
available data, F . As a result, by feeding the sample X to A,
the AE will reconstruct X ∈ R1×n with a minimum loss, i.e.,
A(X) = X̃ where ||X − X̃||2 is close to 0.

AEs include two important components: (1) Encoder
(W1); and (2) Decoder (W2), where X̃ = X × W1 × W2

(Here, for simplicity activation function are ignored). Let
W

(ij)
k be the weight between the ith neuron at layer (k− 1)th

to jth neuron of the kth layer. X = {Xi ∈ Rn}i=1:N define
available set of unlabeled training data, on which A is trained.

Reconstruction Error (RE) measure: To find the impor-
tance of the ith feature (i.e., Fi), Si = ||Ai(X) − X||2 is
computed. Hence, a low value of Si would mean ignoring this
feature will not harm the recostruction of the original data. Ai

is a modified version of A, in which W (i,:)
1 is set to zero.

For robustness against noisy samples, Si is calculated
based on averaging on all training data:

Si =
1

N

∑
||Ai(Xj)−X||2

j=N

j=1 , (1)

where N is the number of training samples. Briefly, it can
be said that Fi is a more important feature compared to Fj if
Si > Sj . As a result, if we sort {S1, · · · ,Sn} in a descending
order, and replace Si with its equivalent feature (i.e., Fi), we
will get the ranked features. Now, based on application, the
first Z features can be selected and the remaining features may
be ignored. A simple heuristic way to automatically select Z
is to set it large enough so that the model leads to the least
error.

If we consider the summation of all REs with the absence
one feature at a time (i.e.,

∑i=N
i=1 Si), we can compute the

importance of each single feature, Fj , by looking at how much
from that total RE is decreased in that feature is selected, which
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is Sj∑i=N
i=1 Si

percent. The value is denoted as the Importance

Factor (IF) of the jth features. As a result, Z can be set based
on a threshold on this total RE criteria, i.e.,

argmin
Z

(1−
∑j=Z

j=1 Sj∑i=N
i=1 Si

> τ). (2)

For example, to preserve 90% of information, τ must be set
to 0.9. Note, Principal Component Analysis (PCA) also shares
the same concept of maximizing the variance, but it involves
feature transformation and obtains a set of transformed features
rather than a subset of the original features.

Feature Contribution (FC) measure: The RE measure
leads to remarkable performance for feature selection and com-
parable with the state-of-the-art. However, this measure may
fail in selecting good features when there are many features
with high correlations with each other. Supposes we have two
features, Fi and Fj , that are highly correlated, but they are
both also very informative features. By ignoring the feature Fi

in the reconstruction process of X , Fj will efficiently retrieve
the missed information (as they are highly correlated), and vice
verse. As a result, both Si and Sj will have low values, and
consequently low ranks for being selected. To overcome this
weakness, we introduce a second measure that re-orders the Z
selected features in previous step. To introduce this measure,
we use the latent representation of the AE (the bottleneck).
Intuitively, features that contribute more in constructing this
representation can simply be considered as important features.

To this end, a new AE,A′, is trained on Z selected features
from the previous step. Let WFi

=
∑j=H

j=1 W
(i,j)
2 define the

sum of output weights of the input neurons of Fi in the trained
A′; with H as the size of the hidden layer. This value can be a
good indication for determining the importance of the selected
features. Sorting the features based on WF i in a descending
order can identify the contribution of the features in building
the latent representation.

In summary, the RE measure ranks features based on how
bad the model will operate in absence of that feature, whereas
FC measure ranks them based on their contribution in building
the latent representation. Therefore, the final set of selected
features by our method, first incorporates RE to select Z fea-
tures, and from these Z ones, the top K features based on
FC are selected. The pseudo-code of the proposed method is
presented in Algorithm 1.

Ranking Image Patches. In many vision-related tasks,
finding informative parts of samples, especially images, is
an important task. We generalize our proposed method for
this task, by replacing single features with image patches.
Specifically, for each B ∈ Rh1×h2, at one step, all h1× h2
pixels of B are deactivated, and RE and FC measures are
calculated. For RE, S ′Bi

is calculated based on Eq. (3). Let
ABi be a version of A whose weights connected to pixels of
the image patch Bi are set to zero.

Fig. 3. Visualization of the feature importance in Fashion-
MNIST (left) and MNIST (right) datasets.

Fig. 4. Selected important pixels (features) and patches on
Fashion-MNIST dataset. Two first rows: From left to right,
50 to 750 pixels with a step-size of 50. Two last rows: From
left to right, 5 to 75 patches of size 5×5 and step-size of 5.
Note:Brighter pixels show higher ranks.

S′Bi
=

1

N

j=N∑
j=1

||ABi (Xj)−X||2. (3)

Hence, Bi is more important than Bj , if S ′Bi
> S ′Bj

. Z
top blocks are selected based on this measure. After that, the
selected blocks are re-ordered based on their contribution on
constructing the latent representation (ofA′ previously learned
on these data). Contribution can be calculated as:

WBi
=

∑
k∈Bi

j=H∑
j=1

W
(k,j)
2 . (4)

2.2. Training the AE
To learn the AE model, similar to previous works [13], the
training process learns W1 and W2 using gradient descent.
Then, W1 ×X can be used as the latent representation of the
data. Suppose we have N training samples with n dimensions,
i.e., Xi ∈ Rn, i ∈ {1, . . . , N}. The auto-encoder minimizes
Eq. (5) by reconstructing the raw data:

L =
1

m

m∑
i=1

|Xi −W2δ(W1Xi + b1) + b2|2 +

n∑
i=1

s∑
j=1

(W 2
ji), (5)

where s is the number of nodes in the hidden layer of auto-
encoder, W1 ∈ Rs·n and W2 ∈ Rn·s are the weight matrices,
which map the input layer nodes to hidden layer nodes and
the hidden layer nodes to the output layer nodes, respectively.
Wji is the weight between the jth hidden layer node and
the ith output layer node, and δ is equal to sigmoid function.
Furthermore, b1 and b2 are the biases for the output layer and
the hidden layer, respectively.

3. EXPERIMENTAL RESULT
We evaluate our proposed method on several standard bench-
marks for classification and compare with the state-of-the-art
feature selection methods. To showcase the performance of the
method, we apply our method to find interest points (pixels)
on MNIST [16] and Fashion MNIST [17] as two standard and
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Table 1. Performance of different feature selection methods. Two methods with top performance in each of measure are colored,
best method is blue and second best in red. If two top methods are equal, both are typeset in blue.

Dataset Algorithm PCMAC Madelon USPS
CFS (0.5000,0.68 ± 0.0492,0.7500) (0.4500,0.52 ± 0.0246,0.5846) (0.1920,0.93 ± 0.1116,0.9790)
LLCFS (0.4974,0.65 ± 0.0470,0.7062) (0.4558,0.52 ± 0.0173,0.5942) (0.1699,0.94 ± 0.0972,0.9790)
UDFS (0.4974,0.67 ± 0.0452,0.7139) (0.5192,0.61 ± 0.0801,0.9115) (0.1257,0.84 ± 0.1335,0.9752)
Relief (0.5052,0.66 ± 0.0470,0.7294) (0.5019,0.62 ± 0.0784,0.9096) (0.1656,0.93 ± 0.1045,0.9795)
FSV (0.5052,0.64 ± 0.0600,0.7268) (0.5077,0.60 ± 0.0765,0.8865) (0.1909,0.94 ± 0.0973,0.9806)
mRMR (—- ) (0.4500,0.50 ± 0.0183,0.5442) (0.2406,0.92 0.0821,0.9773)
InfFS (0.5052,0.64 ± 0.0600,0.7268) (0.4558,0.56 ± 0.0283,0.6288) (0.1370,0.81 ± 0.1926,0.9768)
Ours (0.5052,0.66 ± 0.0391,0.7662) (0.5077,0.61 ± 0.772,0.9115) (0.1931,0.94 ± 0.1024,0.9806)

popular datasets. Also, we show that the proposed method can
efficiently rank the features on (PCMAC1, madelon2, USPS3,
and Semeion [18]).

Compared Methods. Performance of proposed method
is compared with 7 state-of-the-art methods, including
Correlation-based Feature Selection (CFS) [19], Local Learn-
ing based Clustering Feature Selection (LLCFS) [20], Unsu-
pervised Discriminative Feature Selection (UDFS) [21], Relief
[22], Feature selection via concave minimization and support
vector machines (FSV) [23], minimal Redundancy Maxi-
mal Relevance (mRMR) [24], and Infinite Feature Selection
(InfFS) [25].

Experiment Setup. Our implementations are done in
MATLAB and we use the popular Feature Selection Library
(FSLib)4 for testing the compared methods. For all experi-
ments, we divided dataset into two categories: Training data
and test category. 80% of each class are randomly selected as
the training data and the remainder for testing. Hidden layer
size of is experimentally selected.

Results and Comparison. We compare the performance
of our method in comparison of state-of-the-art feature selec-
tion methods, using K-Nearest neighbour as the classifier for
all of them, for fair comparisons.

Table 1 compares the performance of feature selection
algorithms for different datasets. The values presented in
each cell are Minimum, Mean ± STD, and Maximum value
of the accuracies obtained in all settings of the number of
selected features (from 1 to #features). The proposed method is
consistently among the best methods in all these cases, which
shows the generality of the proposed method. In Table 1, the
best method is typeset in blue color and the second best in
red. If the two top model were equally good, both are colored
blue. As can be seen in all three datasets, in most of cases,
our method is the best or the second best method, while the
performance of all methods are not stable.

To qualitatively evaluate the feasibility of our method, we
1http://qwone.com/ jason/20Newsgroups/
2http://clopinet.com/isabelle/Projects/NIPS2003/
3http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html
4https://it.mathworks.com/matlabcentral/fileexchange/56937-feature-selection-library

rank the importance of the image pixels in the Fashion-MNIST
dataset, by reshaping the pixels into feature vectors. Fig. 3
shows one sample from each class with its pixels ranked. More
important pixels are brighter in the figure. As can be seen, the
result are inline with the important parts of the objects and
specific parts of the objects are selected with higher confidence.
It can be observed that mainly general parts of the object
(which are shared between objects of different classes) are
dark, but those that enable distinguishing between objects
are brighter. Furthermore, two first rows of Fig. 4 shows
images from all classes gradually being completed. At first
50 important pixels are shown, after that in every step next
50 important pixels are added. As can be seen, images are
completed in order of specific to general part of each of object
in images. In a separate test, we ran the same experiments
but this time on image patches of size 5×5 instead of pixels.
The ranked images patches are visualized in two last rows
of Fig. 4. Similar to two first rows, shows how images are
gradually completed with respect to importance of their blocks.
Fig. 4 confirm that proposed method can efficiently detect the
informative pixels and image patches.

4. CONCLUSION

In this paper an efficient method based on AutoEncoders was
introduced for feature selection (and also for discovering the
informative image patches). Our method is presented based
on (1) analyzing of reconstruction error of training samples in
absence of a feature, i.e., introducing the RE measure, and (2)
the amount of the contribution for each feature to reconstruct
the original input, i.e., introducing the FC measure. Results
confirm that our method can be used as a reliable feature
selection method on different datasets.
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