
JOINT STRUCTURED GRAPH LEARNING AND CLUSTERING
BASED ON CONCEPT FACTORIZATION

Yong Peng1,2,∗, Rixin Tang1, Wanzeng Kong1, Jianhai Zhang1, Feiping Nie2 and Andrzej Cichocki3,1

1 School of Computer Science, Hangzhou Dianzi University, Hangzhou 310018, China
2Center for OPTIMAL, Northwestern Polytechnical University, Xi’an 710072, China

3Skolkovo Institute of Science and Technology (SKOLTECH), Moscow 143026, Russia
yongpeng@hdu.edu.cn

ABSTRACT
As one of the matrix factorization models, concept factoriza-
tion (CF) achieved promising performance in learning data
representation in both original feature space and reproducible
kernel Hilbert space (RKHS). Based on the consensuses that
1) learning performance of models can be enhanced by ex-
ploiting the geometrical structure of data and 2) jointly per-
forming structured graph learning and clustering can avoid
the suboptimal solutions caused by the two-stage strategy in
graph-based learning, we developed a new CF model with
self-expression. Our model has a combined coefficient ma-
trix which is able to learn more efficiently. In other words,
we propose a CF-based joint structured graph learning and
clustering model (JSGCF). A new efficient iterative method
is developed to optimize the JSGCF objective function. Ex-
perimental results on representative data sets demonstrate the
effectiveness of our new JSGCF algorithm.

Index Terms— Structured graph learning, joint learning,
concept factorization, clustering

1. INTRODUCTION

Non-negative matrix factorization (NMF) [1] is one of the fa-
mous matrix factorization models [2, 3, 4, 5, 6] to learn ef-
ficient data representation. Mathematically, NMF approxi-
mates the target matrix with the product of two non-negative
matrices. The learned parts-based representation not only has
biological plausibility but also shows excellent performance
in pattern recognition problems. However, it can only be per-
formed in original data feature space and thus cannot charac-
terize the possible nonlinear structure of data. As an extension
of NMF, concept factorization (CF) was proposed which can
be performed in both original feature space and RKHS [7].

This work was supported by NSFC (61602140,61671193,61633010),
Zhejiang Science & Technology Program (2017C33049,2018C04012), Chi-
na Postdoctoral Science Foundation (2017M620470), Ministry of Education
and Science of the Russian Federation (14.756.31.0001), Jiangsu Key Lab. of
Big Data Security & Intelligent Processing (BDSIP201804), Co-Innovation
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(ADXXBZ201704), and Guangxi Key Laboratory of Multi-source Informa-
tion Mining & Security (MIMS18-06).

The learning performance of models can be considerably
enhanced by exploiting the geometrical structure of data, lo-
cally consistent CF (LCCF) [8] was proposed to constrain the
coefficient matrix to preserve the local invariance property. In
LCCF, the geometrical structure of data was characterized by
a nearest neighbor graph to be used to regularize the learning
process. After obtaining the coefficient matrix, K-means was
used to obtain the final clustering results. In our approach, we
learn an adaptive graph from data which has obvious cluster-
ing structure and then the post-processing such as K-means
clustering would be unnecessary [9, 10]. In this paper, we
treat CF as a non-negative self-expression model. Then the
combined coefficient matrix can be viewed as a graph affin-
ity matrix based on which we propose to learn a high level
one with more suitable properties such as non-negativity, nor-
malization and constrained rank. The clustering tasks are per-
formed jointly with the graph learning process. This results
in the proposed JSGCF model which is implemented as an
efficient algorithm. Extensive experiments are conducted to
demonstrate the high performance of our JSGCF approach.

2. THE PROPOSED JSGCF MODEL
2.1. Model Formulation

Given a data matrix X = [x1,x2, · · · ,xn] ∈ Rd×n, NMF
minimizes the approximation error between the data matrix
and two non-negative factor matrices U ∈ Rd×c, V ∈ Rn×c

(c is the number of classes/clusters) as

min
U,V
∥X−UVT ∥2F , s.t.U ≥ 0,V ≥ 0. (1)

However, standard NMF can only be performed in the o-
riginal feature space. To characterize the possible nonlin-
ear structure of data, Xu and Gong [7] proposed CF as an
extension of NMF. Concretely, each basis uk is required to
be a non-negative linear combination of samples as uk =∑n

j=1 xjwjk, wjk ≥ 0. Therefore, the objective of CF is

min
W,V

∥X−XWVT ∥2F , s.t.W ≥ 0,V ≥ 0. (2)

Obviously, CF can be performed in both original feature space
and reproducible kernel Hilbert space (RKHS).
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If treating WVT as a whole, CF will be a self-expression
model [11, 12, 13, 14] in which WVT acts as a combined
graph affinity matrix. We expect such graph to be close to an
ideal one based on which we can partition the data points into
c clusters, without performing any post-processing. Based on
the equivalence between such exact c block diagonals prior of
a graph affinity matrix and the multiplicity of the eigenvalue
zero of the corresponding Laplacian matrix [10], we can im-
pose the rank constraint on the Laplacian matrix of WVT ,
LWVT , as rank(LWVT ) = n − c. Therefore, we formulate
the following optimization problem

min
W≥0,V≥0

∥X−XWVT ∥2F , s.t. rank(LWVT ) = n−c. (3)

Here we show how to convert the rank constraint in (3)
into an equivalent mathematical expression to make it more
tractable. Denote σi(LWVT ) as the i-th smallest eigenvalue
of LWVT . It is obvious that σi(LWVT ) ≥ 0 since LWVT

is positive semidefinite. If
∑c

i=1 σi(LWVT ) approaches ze-
ro and then the constraint rank(LWVT ) = n − c in (3) will
be approximately satisfied. Therefore, we can incorporate∑c

i=1 σi(LWVT ) into CF model as a regularization term and
apply a sufficiently large regularization parameter α. Further-
more, according to Ky Fan’s Theorem [15], we have the fol-
lowing minimization problem∑c

i=1
σi(LWVT ) = min

F∈Rn×c,FTF=I
Tr(FTLWVTF), (4)

where each row fi of F can be seen as a vector connected to
data point xi on the graph WVT [16, 17]. Therefore, (3) is
equivalent to

min
W,V,F

∥X−XWVT ∥2F + αTr(FTLWVTF).

s.t.W ≥ 0,V ≥ 0,F ∈ Rn×c,FTF = I.
(5)

We can see that both W and V are involved in LWVT

which makes the above objective function difficult to mini-
mize. Therefore, by introducing an auxiliary variable S w.r.t.
WVT , we obtain

min
W,V,S,F

∥X−XWVT ∥2F + αTr(FTLSF) + β∥S−WVT ∥2F .

s.t.W ≥ 0,V ≥ 0,F ∈ Rn×c,FTF = I.

Before presenting the detailed optimization procedure, we
further explain the role of S. Mathematically, it is an aux-
iliary variable to make the objective function separable. In
fact, we can see WVT as a low-level graph and S as a
high-level one which has better desired properties. From this
perspective, we impose an additional constraint that the sum
of elements in each row of S to be one. Finally, we achieve
the objective of JSGCF as

min ∥X−XWVT ∥2F + αTr(FTLSF) + β∥S−WVT ∥2F
s.t.W ≥ 0,V ≥ 0,S1 = 1,S ≥ 0,F ∈ Rn×c,FTF = I

(6)

2.2. Optimization

Obviously, directly minimizing (6) is intractable. Therefore,
we update one variable while the others are fixed under the
alternating direction method framework.

1) Update F. The objective O(F) is

min
F

Tr(FTLSF), s.t. F ∈ Rn×c,FTF = I. (7)

The optimal solution of F is formed as the c eigenvectors of
LS corresponding to the c smallest eigenvalues.

2) Update W and V. The objective O(W,V) is

min
W≥0,V≥0

∥X−XWVT ∥2F + β∥S−WVT ∥2F . (8)

Let ψjk and ϕjk be Lagrange multipliers for wjk ≥ 0 and
vjk ≥ 0 respectively. We define Ψ = [ψjk] and Φ = [ϕjk].
The corresponding Lagrangian function L is

min ∥X−XWVT ∥2+β∥S−WVT ∥2+Tr(ΨWT )+Tr(ΦVT ).

The derivatives of L w.r.t. W and V can be expressed as

∂L
∂W

= −2(K+ βS)V + 2(K+ βI)WVTV +Ψ,

∂L
∂V

= −2(K+ βST )W + 2VWT (K+ βI)W +Φ.

Setting the derivatives to be zero and using the KKT condi-
tions ψjkwjk = 0 and ϕjkvjk = 0, we get

−[(K+ βS)V]jkwjk + [(K+ βI)WVTV]jkwjk = 0,

−[(K+ βST )W]jkvjk + [VWT (K+ βI)W]jkvjk = 0,

which lead to the following simple updating rules

wjk ← wjk
[(K+ βS)V]jk

[(K+ βI)WVTV]jk
(9)

vjk ← vjk
[(K+ βST )W]jk

[VWT (K+ βI)W]jk
(10)

In particular, in order to make W and V unique, we use the
same simple method in [8] to normalize them.

3) Update S. The objective O(S) is

min
S≥0,S1=1

αTr(FTLSF) + β∥S−WVT ∥2F . (11)

The matrix form representation in (11) can be decomposed as

min
S1=1,S≥0

α

β

n∑
i,j=1

∥fi−fj∥22sij+
n∑

i,j=1

(sij−(WV)ij)
2. (12)

Denoting pij = ∥fi − fj∥2 and denoting pi as a vector with
the j-th element equal to pij (and similarly for si and (wv)i),
and thus (12) can be rewritten in vector form as

min
si1=1,si≥0

∥si − ((wv)i −
α

2β
pi)∥22. (13)

This problem can be solved with a closed form solution or al-
ternatively solved by an efficient iterative algorithm [18, 10].

We summarize the detailed procedure to JSGCF optimiza-
tion in (6) in Algorithm 1.
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Algorithm 1 The optimization to JSGCF objective in (6)
Input: Data X ∈ Rd×n, the number of clusters c, regulariza-

tion parameters α and β.
Output: Variable W, V, F and S with exactly c connected

components.
1: Initialize W and V randomly; Initialize F as the c eigen-

vectors of LA = DA − AT+A
2 corresponding to the c

smallest eigenvalues, where A ∈ Rn×n is an affinity ma-
trix constructed based on X with ‘HeatKernel’ function.

2: while not converged do
3: Update F according to (7);
4: Update W according to (9);
5: Update V according to (10);
6: Update S according to (13);
7: end while

2.3. Convergence and Complexity Analysis

The updating of each variable in JSGCF approach is essen-
tially iterative. Here we give a brief analysis on the updating
rule to each variable. Since sub-objective associated with F
is convex, the updating rule to F is in analytical form which
leads to the non-increasing trend of the JSGCF objective func-
tion. The optimization procedure to update W and V follows
the pipeline of CF and LCCF whose convergence has been
already investigated in [7, 8] by introducing appropriate aux-
iliary functions. Since the objective on S is convex by fixing
W, V and F, the updating rule for S also provides the con-
vergence of JSGCF. In practice, we can investigate the con-
vergence condition by checking whether ∥S−WVT ∥∞ < ε
(ε is a small value) is satisfied or not.

The main complexity is caused by the loop in Algorithm
1 which contains four blocks. For the updating of variable F,
the main costs lie in calculating the c eigenvector of Lapla-
cian matrix LS ∈ Rn×n with complexity O(n2c). We need
O(t1n) operations to calculate S in each iteration by an effi-
cient iterative method in which t1 is the number of iterations
of the Newton method. For the updating to W and V, we
count the arithmetic operations for CF, LCCF and JSGCF in
Table 1 where p is the number of nearest neighbors in LC-
CF, fladd, flmlt and fldiv respectively mean the floating-point
addition, floating-point multiplication and floating-point di-
vision. In LCCF, S is a p-sparse matrix while in JSGCF it
is an n

c -sparse matrix on average (Each cluster has n
c sam-

ples on average). In general, the complexity of JSGCF is
O(t(n2c+ nt1)), where t is the number of iterations.

3. EXPERIMENTS

3.1. Experimental Settings

Three representative benchmark data sets, COIL20, PIE and
UMIST, were used in our experiments. The properties of
them are the same as those in [19, 16]. We compare JSGCF
with K-means, Normalized Cut (NCut) [20], NMF [1], CF

Table 1. Complexity analysis: operations of CF, LCCF and
JSGCF in updating W and V in each iteration.

CF LCCF JSGCF

fladd 4n2c+ 4nc2
4n2c+ 4nc2+

n(p+ 3)c

4n2c+ 4nc2+
2(nn

c
c+ 3nc)

flmlt
4n2c+ 4nc2

+2nc
4n2c+ 4nc2+

n(p+ 3)c

4n2c+ 4nc2 + 2nc
+2(nn

c
c+ nc)

fldiv 2nc 2nc 2nc

overall O(n2c) O(n2c) O(n2c)

[7] and LCCF [8] in terms of the clustering performance on
the given data sets. Linear kernel was used in different CF
variants. Two metrics, Accuracy (ACC) and Normalized Mu-
tual Information (NMI), are used to evaluate the clustering
performance. The parameters involved in respective algorith-
m were tuned in wide range from 10−3 to 103.

3.2. Clustering Results

Tables 2, 3 and 4 show the clustering performance of COIL20,
PIE and UMIST data sets. The clustering experiments were
conducted with different numbers of clusters. For each giv-
en cluster numbers, 20 test runs are conducted on different
randomly chosen clusters. The final results are reported by
averaging the results for 20 runs. For the sake of fairness,
we record the randomly chosen cluster indices and fix them
for all competing algorithms. From the results, we can find
that 1) the learning performance can be greatly enhanced by
exploiting and considering the geometrical structure of data.
This is reflected by the fact that the performance of both L-
CCF and JSGCF can get better performance than CF. 2) it is
beneficial to jointly perform graph construction and learning
task. Such obtained graph can well adapt to the structure of
data sets and thus much better clustering performance can be
achieved. This indicates that JSGCF which learns an adaptive
graph is more competitive than LCCF which utilizes a fixed
graph to depict the data structure and then imposes constraints
on the coefficient matrix.

To illustrate how JSGCF constructs the optimal graph, we
select the first 13 clusters from the PIE data set and visual-
ize the data affinity matrix S learned by JSGCF in Figure 1.
We can see that the block diagonal structure is gradually more
clear as the number of iterations increases. The values with-
in block diagonals increased means the within-cluster con-
nections are enhanced. To verify the convergence analysis
provided in section 2.3, we experimentally show the conver-
gence curves of JSGCF on COIL20 and PIE data sets in Fig-
ure 2. The objective function value monotonically decreases
till convergence during iteration process.

4. CONCLUSIONS

In this paper, we proposed a joint structured graph learning
and clustering model, termed JSGCF. The motivation of JS-
GCF was to view WVT in CF as a whole and thus view CF as
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Table 2. Comparison of clustering performance on COIL20.

K
Accuracy (mean±std-dev%) Normalized Mutual Information (mean±std-dev%)

Kmeans NCut NMF CF LCCF JSGCF Kmeans NCut NMF CF LCCF JSGCF
6 75.9±12.4 82.5±14.5 70.2±11.7 69.3±11.3 86.9±9.3 88.5±11.8 72.9±11.9 86.2±9.4 68.7±12.5 67.3±11.5 85.2±9.0 90.1±8.0
8 72.7±9.2 79.0±15.6 71.0±10.2 67.1±11.0 82.1±11.0 86.6±15.4 73.0±9.0 84.8±10.8 70.7±9.2 67.9±9.9 83.1±9.3 90.4±9.2
10 70.3±6.1 76.7±10.3 69.9±9.1 64.8±5.1 78.2±8.9 84.8±9.6 73.6±5.6 84.5±6.8 72.0±7.4 69.2±4.6 82.5±6.4 90.2±5.9
12 66.9±7.8 75.3±12.1 67.9±8.1 63.7±8.7 77.3±6.1 82.0±12.3 73.4±5.9 84.5±8.2 72.5±6.7 70.4±6.2 82.1±5.7 88.5±8.4
14 66.3±4.7 66.3±9.0 65.6±5.0 62.5±5.1 76.4±6.5 80.8±6.2 73.9±3.3 81.4±4.8 72.4±4.1 71.0±3.4 83.4±4.1 89.0±3.7
16 65.6±5.9 65.0±10.7 66.4±4.8 61.9±5.1 74.3±5.1 83.2±5.3 73.6±4.1 79.5±7.7 73.0±3.5 71.6±4.1 82.5±3.9 90.9±3.1
18 65.9±3.6 64.1±7.2 65.1±3.7 62.7±3.9 75.2±5.4 80.9±3.0 75.7±2.3 80.5±4.7 74.2±2.6 73.4±2.4 84.1±3.3 89.9±1.8
20 60.5 62.6 63.8 63.8 74.7 83.5 73.9 89.0 72.8 74.0 80.9 91.9
Avg. 68.0 71.4 67.5 64.5 78.1 83.8 73.8 82.8 72.0 70.6 83.3 90.1

Table 3. Comparison of clustering performance on PIE.

K
Accuracy (mean±std-dev%) Normalized Mutual Information (mean±std-dev%)

Kmeans NCut NMF CF LCCF JSGCF Kmeans NCut NMF CF LCCF JSGCF
10 29.8±4.1 71.3±12.7 55.9±4.7 55.6±3.7 69.1±9.9 78.7±11.7 35.2±6.1 81.1±8.9 65.0±3.6 62.5±2.7 80.8±7.0 85.6±6.9
20 27.5±2.7 66.8±9.6 57.6±3.5 57.8±3.5 65.5±5.8 74.6±8.5 43.8±2.7 81.5±6.6 74.5±1.8 70.5±1.8 81.7±3.4 85.7±5.7
30 26.5±2.1 66.4±6.1 56.4±3.5 58.4±2.2 63.7±5.4 73.6±5.2 48.6±2.0 81.9±4.2 76.8±1.9 72.9±1.7 82.5±2.5 86.6±2.8
40 25.8±1.4 65.1±4.7 57.4±3.1 57.3±2.9 61.2±3.7 72.1±5.0 50.4±1.7 81.1±3.5 78.8±1.2 73.4±1.4 82.3±1.8 85.8±2.7
50 24.7±1.3 62.7±3.5 57.1±2.6 56.3±2.8 62.8±4.1 71.9±4.0 51.5±1.1 81.2±1.7 79.6±1.3 73.7±1.6 83.5±1.6 85.3±2.1
60 24.3±1.1 62.4±3.6 56.8±2.5 55.5±2.1 62.6±3.5 70.1±2.6 53.3±1.1 80.5±2.3 80.5±0.9 74.3±1.1 84.4±1.3 85.0±1.4
68 24.5 63.2 56.4 57.2 62.5 70.0 53.8 81.4 81.1 74.6 83.8 84.9
Avg. 26.2 65.4 56.8 56.9 63.9 73.0 48.1 81.2 76.6 71.7 82.7 85.6

Table 4. Comparison of clustering performance on UMIST.

K
Accuracy (mean±std-dev%) Normalized Mutual Information (mean±std-dev%)

Kmeans NCut NMF CF LCCF JSGCF Kmeans NCut NMF CF LCCF JSGCF
6 54.2±7.5 67.2±13.5 53.1±6.4 52.5±7.3 56.3±11.3 72.3±16.4 55.3±10.5 71.8±13.4 54.4±10.7 51.5±8.7 56.2±15.9 77.0±14.6
8 50.7±5.5 62.8±10.9 49.3±7.6 49.3±5.1 56.5±10.0 67.4±7.3 57.5±6.3 70.7±8.4 56.1±8.0 54.4±5.9 64.9±10.6 75.5±6.5
10 48.9±7.0 61.5±7.7 47.3±4.9 46.0±4.2 50.4±8.1 64.9±8.2 58.4±6.9 72.0±7.3 55.7±6.1 55.2±4.7 62.1±9.7 76.5±6.2
12 46.0±4.8 59.9±7.3 45.4±4.2 45.1±5.7 51.0±7.5 60.0±7.3 58.4±5.3 71.6±5.6 57.4±4.8 55.2±4.6 63.7±7.7 73.2±6.1
14 44.1±3.0 54.7±5.9 41.9±3.2 42.3±4.5 51.0±8.4 58.5±7.8 59.1±3.6 69.7±5.8 56.4±3.4 54.7±4.7 65.2±8.3 74.1±5.7
16 42.9±2.9 53.6±5.3 40.2±2.4 40.5±2.8 50.4±5.1 55.9±3.9 59.3±2.8 69.5±3.8 55.9±2.3 55.1±2.8 66.3±4.8 72.2±3.1
18 40.8±2.0 55.2±5.0 40.4±2.6 39.9±2.8 51.5±6.4 56.6±4.0 59.6±1.7 70.9±2.8 57.6±2.6 56.1±2.1 68.3±5.2 72.6±2.6
20 39.3 50.1 40.7 39.8 53.7 57.6 60.0 66.1 57.5 54.9 70.7 73.0
Avg 45.9 58.1 44.8 44.4 52.6 61.7 58.5 70.3 56.4 54.6 64.7 74.3
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Fig. 1. Visualization of the data affinity matrices for the PIE subset learned by our JSGCF.
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Fig. 2. Convergence curves of JSGCF for COIL20 and PIE
data sets.

a self-expression model in which WVT played a crucial role
as a graph affinity matrix. However, this graph was somewhat
elementary and thus we proposed to learn a high level one
with more desirable properties. To this end, a structured graph
with non-negativity, row-sum-to-one and constrained rank
was learned jointly with the clustering task completed. Ex-
tensive experiments showed the very good performance of
JSGCF in data clustering. Furthermore, we have investigat-
ed how our algorithm evolves in time and gradually improves
the quality of the graph affinity matrix.
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