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ABSTRACT

This paper presents an automatic kernel weighting technique for
multikernel adaptive filtering. The full potential of the multikernel
adaptive filtering approach can only be achieved when the kernels
are weighted appropriately. The proposed technique balances the
dominance of the kernels by making the mean eigenvalues of their
associated autocorrelation matrices be equal to each other. The over-
all complexity of the proposed approach is low because the mean
eigenvalues can be computed efficiently. The numerical results ver-
ify that the proposed technique balances the coefficient updates and
yields reasonable performance.

Index Terms— kernel adaptive filtering, reproducing kernel
Hilbert space (RKHS), parameter tuning, multiscale analysis

1. INTRODUCTION

Signals encountered in the engineering often include multiple com-
ponents with different scales. As we introduce later, there exist two
types of the multiscaleness, which are related to the target function to
be estimated and the sample data. Such multiscaleness has been wit-
nessed in many engineering applications including biomedical en-
gineering, material engineering and data analysis [1–7], as well as
image and acoustic signal processing. Multikernel adaptive filter-
ing [8–14] is a promising approach for online estimation of a multi-
scale function, since it considers multiple reproducing kernel Hilbert
spaces simultaneously. Using multiple kernels, an adaptive filtering
algorithm may also be more effective in both senses of computa-
tional complexity and memory usage than that using only a single
kernel. Several criteria [15–18] can be employed to prevent unnec-
essary growth of the dictionaries and achieve reasonable dictionary
size. It has been reported that multikernel adaptive filtering works
efficiently in some applications including communication [19, 20],
sensor network [21] and robotics [22].

Since any positive scaling on a reproducing kernel generates an-
other reproducing kernel, one can also consider multikernel adap-
tive filtering with “weighted” kernels. With appropriately weighted
reproducing kernels, a multikernel adaptive filtering algorithm can
achieve both of higher accuracy and smaller dictionary than the case
using unweighted kernels. However, inappropriate weights on ker-
nels cause unbalance among updates of the coefficients correspond-
ing to those kernels and consequently fail to achieve desirable per-
formance. In the worst case, the performance would be worse than
when we use only a single kernel. It becomes more difficult to im-
pose proper weights on kernels as we have larger number of, or
more kinds of reproducing kernels to weight. The use of inappro-
priately weighted kernels may cause considerable differences among
convergence speeds of the coefficients corresponding to the kernels.
More specifically, it may happen that the coefficients corresponding
to some of the kernels grow fast while those corresponding to the
others hardly grow. It is of significant importance to avoid such situ-
ations by developing a well-designed kernel weighting technique for
exploiting the full potential of the multikernel adaptive filtering.
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In this paper, we propose an automatic kernel weighting tech-
nique for a multikernel adaptive filtering algorithm to achieve rea-
sonably high accuracy and small dictionary size simultaneously.
We mainly consider multikernel adaptive filtering with the multiple
Gaussian kernels in this paper, since we can deal with the multiscale-
ness simply by only considering a single parameter. Among many
multikernel adaptive filtering algorithms [8–13], we focus on the
multikernel normalized least mean squares (MKNLMS) algorithm
with the coherence criterion [18] and Platt’s criterion [15]. In the
algorithm, we consider a concatenated vector of the kernelized input
vectors with multiple kernels and the autocorrelation matrix of that
concatenated vector. The proposed automatic weighting technique
aims to adjust the coefficient updates corresponding to reproducing
kernels in a good balance. On developing the proposed technique,
we focus on the submatrices of the autocorrelation matrix. If one
submatrix is dominant, the corresponding coefficients will be up-
dated in a large amplitude, whereas the other coefficients hardly
change. To evaluate such dominance of each submatrix on update of
the corresponding coefficients, we exploit its mean eigenvalue. The
mean eigenvalue of each submatrix can be calculated effectively,
since the sum of eigenvalues is obtained by averaging the squared
ℓ2-norm of the corresponding kernelized input vector. At each it-
eration, the weights are adjusted to balance the mean eigenvalues
of submatrices. The proposed kernel weighting technique can be
implemented by using either (i) the weighted reproducing kernels
directly, or (ii) the weights to design a metric distance. The two
implementations are equivalent in the sense of mean squared error
(MSE) when the weights are fixed, while that is not guaranteed if
the weights are time-varying. Numerical examples using two Gaus-
sian kernels are presented to verify the performance of the proposed
automatic kernel weighting technique.

2. MULTIKERNEL ADAPTIVE FILTERING AND
MULTISCALENESS

Consider the following nonlinear adaptive filtering model:

dn = ψ∗(un) + νn, (1)

where un ∈ R
L is the input vector, yn is the corresponding output,

νn is the unknown additive noise, and ψ∗ is an unknown function
to be estimated. Typical kernel adaptive filtering schemes aim to
approximate

ψ∗(·) ≈
r

∑

j=1

αjκ(xj , ·), (2)

where κ(·, ·) is a positive definite kernel function, and r is the car-
dinality of a dictionary D := {κ(x1, ·), · · · , κ(xr, ·)}. One of the
representative examples is a normalized Gaussian kernel, which is
defined as

κG(x,u) =
1

(
√
2πσ)L

exp

(

− ‖x− u‖22
2σ2

)

(3)

for σ > 0. A dictionary with sufficiently large cardinality needs for
small error, but an extremely large dictionary causes heavy computa-
tional burden. Several criteria [15–18] have been proposed in order
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to construct a dictionary with reasonable size. Multikernel adaptive
filtering schemes utilize multiple kernels simultaneously so that the
approximation becomes

ψ∗(·) ≈
Q
∑

q=1

r(q)
∑

j=1

α
(q)
j κ(q)(x

(q)
j , ·), (4)

where κ(q)(·, ·) is the qth kernel function, and r(q) is the cardinal-

ity of corresponding dictionary D(q). Yukawa [8, 11] has proposed
the MKNLMS algorithm which estimates ψ∗(·) by applying NLMS
scheme with the kernelized input. At each iteration, the MKNLMS
algorithm updates its estimate as follows:

1. For all q = 1, 2, · · · , Q, calculate the kernelized input vector
associated with qth kernel function as follows:

k
(q)
n =

[

κ(q)(x
(q)
1 ,un), κ

(q)(x
(q)
2 ,un), · · ·, κ(q)(x

(q)

r(q)
,un)

]T

.

2. After constructing the dictionaries D(q)
n , ∀q,

if {κ(q)(un, ·)} /∈ D(q)
n−1 and D(q)

n = D(q)
n−1 ∪{κ(q)(un, ·)},

α̃
(q)
n =

[

(α
(q)
n )T 0

]T

, k̃
(q)

n =
[

(k
(q)
n )T 1

]T

.

Otherwise, α̃
(q)
n = α

(q)
n , k̃

(q)

n = k
(q)
n .

3. Concatenate the vectors as follows:

α̃n =
[

(

α̃
(1)
n

)T

,
(

α̃
(2)
n

)T

, · · · ,
(

α̃
(Q)
n

)T
]

T

,

k̃n =
[

(

k̃
(1)

n

)

T

,
(

k̃
(2)

n

)

T

, · · · ,
(

k̃
(Q)

n

)

T
]T

.

4. Update the estimate α as follows:

αn+1 = α̃n − µ
k̃
T

nα̃n − dn

‖k̃n‖22
k̃n. (5)

From (4), multikernel adaptive filtering can be seen as nonlin-
ear approximation of ψ∗(·), which consists of different reproducing

kernels κ(q). Below we introduce two types of multiscaleness.
Task-relevant multiscaleness: The target function consists of mul-
tiple components with different scales from each other (Fig. 1 (a)).
One might approximate the function accurately with a single basis
function. However, it will need a dictionary with extremely large
size. In other words, it takes extremely long time to approximate the
function. By using multiple basis functions with different scales, the
approximation can be calculated in shorter time, even if the same or
higher accuracy is required.
Sample-relevant multiscaleness: The distribution of the sample
data in the input space has a multiscale characteristic. Suppose that
we estimate an unknown system from sampled input data given as
Fig. 2 (b) and corresponding output data. In this case, estimation
with multiple basis function will be more accurate than that with a
single basis function.

Throughout this paper, we mainly consider the case that all the

kernel functions κ(q)(·, ·), (q = 1, 2, · · · , Q) are Gaussian ker-

nel defined as (3) with the scaling parameters σ(1), σ(2), · · · , σ(Q),
where we can deal with the multiscaleness by only considering those
parameters.

3. AUTOMATIC KERNEL WEIGHTING FOR
MULTIKERNEL ADAPTIVE FILTERING

3.1. Weighting on Kernels

Given a positive definite kernel function κ and a constant w > 0,
it is trivial that κw(·, ·) := wκ(·, ·) is also a positive definite kernel
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Fig. 1. Two types of multiscaleness.
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Fig. 2. The MSE and dictionary evolutions under different weights.

function. Therefore, one can utilize weights in multikernel adaptive
filtering and rewrite (4) as follows:

ψ∗(·) ≈
Q
∑

q=1

r(q)
∑

j=1

α
(q)
j κ

(q)

w(q) (x
(q)
j , ·)

=

Q
∑

q=1

r(q)
∑

j=1

α
(q)
j w(q)κ(q)(x

(q)
j , ·). (6)

This kind of weighting can be simply applied to multikernel adap-

tive filtering by replacing κ(q)(·, ·) into κ
(q)

w(q) (·, ·). Applying care-

fully chosen weights, one can attain small error while maintaining
the dictionary sizes in an affordable range. However, an inappro-
priate choice of the weights causes large error without reasonable
reduction of dictionary sizes.

Figs. 2 (a) and (b) show the MSE and the dictionary evolution
of the MKNLMS algorithm with different weights for two Gaus-
sian kernels. See the blue curve, which stands for the unweighted
case. Both of the MSE and dictionary size are larger than the other
cases. The weight setting shown as the red curve seems to achieve
both of small MSE and reasonable dictionary size. On the other
hand, the yellow curve shows the same MSE as the red curve with
slightly smaller dictionaries, while its convergence speed is much
slower than that of the red curve. More kernels we deal with, more
difficult to find appropriate weights. To avoid such difficulty, we
propose an automatic kernel weighting technique.

3.2. Automatic Kernel Weighting

The autocorrelation matrix of the (concatenated) kernelized input
with unweighted kernels is given as follows:

K := E[knk
T

n] =











K
(1,1)

K
(1,2) · · · K

(1,Q)

K
(2,1)

K
(2,2) · · · K

(2,Q)

...
...

. . .
...

K
(Q,1)

K
(Q,2) · · · K

(Q,Q)











, (7)
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where K
(p,q) is a correlation matrix of the subvectors k

(p)
n =

[κ(p)(x
(p)
1 ,un), κ

(p)(x
(p)
2 ,un), · · · , κ(p)(x

(p)

r(p)
,un)]

T and k
(q)
n =

[κ(q)(x
(q)
1 ,un), κ

(q)(x
(q)
2 ,un), · · · , κ(q)(x

(q)

r(q)
,un)]

T, which are

corresponding to the pth and qth kernel function, respectively. Given

weights (w(1), w(2), · · · , w(Q)), the corresponding weighted ver-
sion of K can be written as follows:











(w(1))2K(1,1) w(1)w(2)
K

(1,2) · · · w(1)w(N)
K

(1,N)

w(2)w(1)
K

(2,1) (w(2))2K(2,2) · · · w(2)w(Q)
K

(2,Q)

...
...

. . .
...

w(Q)w(1)
K

(Q,1) w(Q)w(2)
K

(Q,2) · · · (w(Q))2K(Q,Q)











.

If one submatrix K
(q,q) is dominant compared with the other

K
(p,p), q 6= p, then the coefficients corresponding to any pth kernel

will hardly change. Under an appropriate weight setting, one can
balance the submatrices so that all the coefficients are updated fairly.

Here we evaluate the dominance of K(q,q) by its mean eigen-
value, which can be computed as

trace
(

K
(q,q)

)

r(q)
=

trace
(

E[k
(q)
n (k

(q)
n )T]

)

r(q)
=
E[‖k(q)

n ‖22]
r(q)

, (8)

where r(q) is the size of K(q,q). With sufficiently large n, we can
use the following approximation:

K = E
[

knk
T

n

]

≈ 1

n

n
∑

l=1

klk
T

l =: K̂. (9)

This implies that the matrix K̂ is a reasonable substitute of K . Sup-

pose that we set the weights w
(1)
n , ∀q ∈ {1, 2, · · · , Q} at every nth

iteration. Along the above discussion, given submatrices K̂
(q,q)

n of

K̂, the mean eigenvalue of the weighted submatrix (w
(q)
n )2K̂

(q,q)

n

is calculated from (8) as follows:

(mean eigenvalue of (w(q)
n )2K̂

(q,q)

n )

=
trace

(

(w
(q)
n )2K̂

(q,q)

n

)

r
(q)
n

= (w(q)
n )2

trace
(

K̂
(q,q)

n

)

r
(q)
n

=(w(q)
n )2

1
n

∑n

l=1 ‖kl‖22
r
(q)
n

. (10)

The proposed weight design is thus formulated by

(w(q)
n )2

1
n

∑n

l=1 ‖kl‖22
r
(q)
n

= Const., (11)

and
Q
∑

q=1

w(q)
n = 1, w(q)

n ≥ 0, (12)

where r
(q)
n is the size of K̂

(q,q)

n . Then combining (11) and (12)
straightforwardly leads to the following weight:

w(q)
n =

√

r(q)
∑n

l=1

∥

∥k
(q)
l

∥

∥

2

2

Q
∑

p=1

√

r(p)
∑n

l=1

∥

∥k
(p)
l

∥

∥

2

2

. (13)

Table 1. Initial setting for Experiments 1, 2

Parameter Value(s)

Step size µ = 0.1

Kernel parameters σ(1) = 1, σ(2) = 0.02

Coherence thresholds δ(1) = 0.92, δ(2) = 0.6

Const. for Platt’s criterion ǫ = 0.01

3.3. Implementation of the Automatic Weighting

Basically, the kernel weighting means imposing a weight w on a
kernel κ(·, ·) to yield the weighted kernel κw(·, ·) := wκ(·, ·). This
weighted kernel can be directly applied to the MKNLMS algorithm
by replacing the unweighted kernels into the weighted ones, and
then doing the same update (5). Let us call such an implementa-
tion “straightforward”. On the other hand, one can implement the
kernel weighting to the MKNLMS algorithm in a different way by
applying the weights, not to the inputs, but to the update equation as
follows:

αn+1 = α̃n − µ
k̃
T

nα̃n − dn

‖W nk̃n‖22
W

2
nk̃n (14)

with a weighting matrix

W n =















w
(1)
n I

r
(1)
n

O · · · O

O w
(2)
n I

r
(2)
n

· · · O

...
...

. . .
...

O O · · · w
(Q)
n I

r
(Q)
n















∈ R
rn×rn ,

where rn =
∑Q

q=1 r
(q)
n , Ia ∈ R

a×a is the a × a identity matrix,

and O is the zero matrix of appropriate size. Given the same fixed
weights, this implementation works equivalently to the straightfor-
ward implementation in the MSE sense. The update (14) can be

seen as using a metric W
−2
n . In other words, we use the calcu-

lated weights (13) to design a metric for the update at each itera-
tion. Therefore, let us call the kernel weighting by (14) the “metric-
design” implementation. It has been reported that such a usage of
metric unchanges the limit point of the projection algorithm, while it
affects the convergence speed significantly [23–25]. The two ways
of implementation are compared by a toy numerical example in the
next section.

4. NUMERICAL EXPERIMENTS

Experiment 1: We consider the following simple system:

dn = sin

(

π

3
un

)

− exp

(

− (un − 0.5)2

2 · 0.12
)

+ νn, (15)

where νn is the additive i.i.d. Gaussian noise with its variance 10−3.
We estimate the above system by the MKNLMS algorithm with two
Gaussian kernels defined as (3). In this experiment we employ the
straightforward implementation of the kernel weighting. The initial
setting is given in Table 1. All the figures show averaged results of
300 independent trials.

Figs. 3 (a) and (b) show the MSE and the dictionary evolutions
under several weighting, respectively. The blue curve stands for the

case (w(1), w(2)) = (0.5, 0.5), which is equivalent to no weight-

ing. The red curve stands for the weight setting (w(1), w(2)) =
(0.95, 0.05), which is carefully chosen. Finally, the yellow curves
stand for the automatic weighting. In this case, the weights are set
as (13) at each iteration. From Fig. 3 (a), one can see that the au-
tomatic weighting performs better than the unweighted settings in
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both of convergence speed and the MSE. It also achieves almost
the same MSE with the carefully tuned setting at its steady state,
although its convergence speed slows down drastically around the
2000–3000th iterations. Fig. 3 (b) shows that the proposed weight-
ing leads to slightly more dictionary size than the carefully tuned
setting. It seems that it does not need sufficiently large dictionary
size to achieve fast convergence speed. The unweighted setting re-
sults neither fast convergence nor small dictionary.

Fig. 4 shows the ℓ1-norms of the coefficient vectors, each of
which corresponds to a kernel. The carefully tuned setting (red
curves) seems to grow the coefficients enough. On the other hand,
the coefficients grow less under the other settings. The coefficients
corresponding different kernels grow in different speeds under the
unweighted setting. The growing speeds are balanced under both of
the carefully tuned setting and the proposed automatic weighting.
Experiment 2: We consider the same system and the same initial
setting with Experiment 1. The difference from Experiment 1 is
that we use the MKNLMS algorithm using the metric-design ker-
nel weighting. From Fig. 5 together with Fig. 3, one can see that
the two ways of implementation of weighting are equivalent in the
both senses of MSE and dictionary size when the weights are fixed.
On the other hand, the automatic weighting achieves better perfor-
mance when the weights are used to design a metric than using the
weighted kernels directly. Moreover, the automatic weighting leads
to the similar performance to the carefully tuned weight setting, in
both senses of the convergence speed and the dictionary size.

5. CONCLUSION

We have proposed an automatic kernel weighting technique for a
multikernel adaptive filtering algorithm. Multikernel adaptive filter-
ing is a promising approach for nonlinear estimation. Moreover, it
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can deal effectively with a multiscale target function. We have intro-
duced two types of multiscaleness related to the target function and
the input data. With positive weights, one can consider multikernel
adaptive filtering with weighted kernels, since imposing a positive
weight on a positive definite kernel preserves its positive definite-
ness. However, the weights for kernels must be chosen carefully in
order to achieve desirable performance, in both senses of accuracy
and computational cost. With a toy example, we have seen how the
weights affect on the MSE and dictionary size which are yielded by
a multikernel adaptive filtering algorithm.

The proposed automatic kernel weighting has been developed to
adjust each update of the coefficients in a good balance. The balance
among kernels has been evaluated using the mean eigenvalues of
the autocorrelation matrices of corresponding kernelized inputs. At
each iteration, we change the weights to achieve a good balance of
the mean eigenvalues. There have been two ways to implement the
proposed weighting technique: (i) the straightforward implementa-
tion which uses the weighted kernels directly, and (ii) the metric-
design implementation which uses the weights to design a time-
varying metric. By numerical experiments, the proposed weighting
technique has been shown to reduce the MSE and the dictionary size
simultaneously, while maintaining compatible convergence speed. It
has also been seen that the proposed technique balances the growing
speed of coefficients well, whereas the unweighted setting causes
unbalance of the coefficient growth. Especially, the metric-design
implementation of the proposed technique leads to compatible per-
formance to the carefully tuned weight setting.
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