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ABSTRACT

Clustering and categorization of similar images using SIFT
and SURF require a high computational cost. In this paper, a
simple approach to reduce the cardinality of keypoint set and
prune the dimension of SIFT and SURF feature descriptors
for efficient image clustering is proposed. For this purpose,
sparsely spaced (uniformly distributed) important keypoints
are chosen. In addition, multiple reduced dimensional vari-
ants of SIFT and SURF descriptors are presented. Moreover,
clustering time complexity is also improved by proposed con-
textual bag-of-features approach for partitioned keypoint set.
The F-measure statistic is used to evaluate clustering perfor-
mance on a California-ND dataset containing near-duplicate
images. Clustering accuracy of the proposed pruned SIFT and
SURF is found to be at par with traditional SIFT and SURF
with a significant reduction in computational cost.

Index Terms— Image Clustering, SIFT, SURF, Bag-of-
Features, Dimensionality Reduction

1. INTRODUCTION

In today’s world where millions of images are flooded on
the web every day, organizing and categorizing them is of
paramount importance. According to a report [1], Facebook
has around 100 billion images and the number is increasing
exponentially. In image clustering, images are grouped in
such a way that each cluster contains more alike images [2].
In general, image clustering involves the following steps: ex-
tracting features from the image, organizing them, and then
classifying the image to specific cluster [3]. Many feature ex-
traction algorithms are available in literature [4]. The Scale
Invariant Feature Transform (SIFT) is one of the most popu-
lar feature extraction algorithm due to its invariant nature to
scaling, rotation, translation, illumination changes, and small
distortions [5]. SIFT and the several times faster version of
SIFT named Speeded-Up Robust Features (SURF) [6] has
been successfully used in various computer vision and image
processing applications such as object recognition, panorama
stitching, 3D modeling, robot localization and video tracking
[7, 8].
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Deep adaptive learning-based methods [9] could be com-
putationally demanding over SIFT-based methods for cluster-
ing near-duplicate (ND) images. Moreover, SIFT-based clus-
tering requires a substantial amount of computations mainly
due to a large number of keypoints, and high dimensional fea-
ture descriptor. The non-maximal suppression algorithm en-
hanced the recognition of spatially distributed features [10].
Moreover, the cardinality of the keypoint set can be reduced
by raising the keypoint inclusion threshold value [11]. How-
ever, this method produces an unstable and non-uniform num-
ber of keypoints. Many researchers have reduced the dimen-
sion of the SIFT descriptor [12, 13]. The SIFT variant that
uses principal component analysis (PCA) for dimensionality
reduction is PCA-SIFT. PCA-SIFT features are more com-
pact than standard SIFT features. However, additional com-
putations are required for applying PCA. The SIFT and SURF
have been extensively used in visual word dictionary gener-
ation. The orderless bag-of-features (BoF) is found to be ef-
fective in image matching task [14]. However, the ordered
BoF is observed to be more effective than the traditional BoF
model [15]. The partitioned keypoint set dictionary genera-
tion is seldom investigated in the literature.

In this paper image clustering with a simple approach of
pruning SIFT and SURF features are studied. The proposed
work focused on three main aspects: (1) non-uniformity of
keypoints, (2) larger dimension of the feature descriptor, and
(3) partitioned keypoint set dictionary generation. For this,
a technique for selection of uniformly distributed keypoints
and reducing the dimension of the descriptor is presented
such that the distinctiveness of SIFT and SURF is preserved.
Moreover, the keypoint set is partitioned into multiple groups
based on the strength of the features for dictionary generation.
The clustering accuracy is evaluated using the F-measure
statistic. The pruned SIFT and SURF provided encouraging
results with significantly reduced computational cost.

The remainder of this paper is structured as follows: In
Section 2, SIFT, and SURF based Image clustering approach
is described in brief. In Section 3, an efficient clustering
scheme based on pruned features is presented. Section 4
explains evaluation methodology. The experimental results
which demonstrate the effectiveness of the proposed approach
is discussed in Section 5. Section 6 concludes the paper.
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2. SIFT, SURF, AND IMAGE CLUSTERING

SIFT algorithm [5] consists of four key steps: (1) scale-space
extrema detection, (2) keypoint localization, (3) orientation
assignment, and (4) keypoint descriptor representation. The
16 × 16 region around each keypoint is selected and divided
into sixteen 4× 4 sub-regions. Then for each sub-region, ori-
entation histograms are computed with 8 bins (45◦ angles)
each. The resulting feature descriptor of length 128 is nor-
malized to unit length to introduce the invariance to changes
in illumination.

However, SURF algorithm [6] consists of only two key
steps: (1) keypoint detection, and (2) keypoint descriptor rep-
resentation. The squared region around each keypoint is se-
lected and divided into sixteen 4× 4 sub-regions. Then, Haar
wavelets are computed for each sub-region yielding 4 values.
Hence, the SURF feature descriptor of length 64 is obtained.

Bag-of-Features (BoF) is a widely adopted visual feature
descriptor of an image used for classification [16]. The SIFT
or SURF features for all the test images (N ) are extracted and
the same is used for image clustering using the traditional BoF
model. In general, the K-means clustering algorithm is used
in BoF. In BoF [17], feature descriptors are clustered for the
desired amount of visual words (K). Then considering each
visual word as a bin, a histogram with K bins is obtained for
each image. Next, a normalized histogram of size (N × K)
is used to cluster the test collection into a required number of
image clusters X .

K-means is the most famous clustering algorithm in liter-
ature [18]. It is also referred to as Lloyd’s algorithm [19]. In
the computer science community, Lloyd’s algorithm is widely
used for generating visual dictionaries [20]. The running time
complexity of Llyod’s algorithm isO(ndki), where n denotes
the number of d-dimensional keypoints, k is the number of
visual words, and i represents a number of iterations required
until convergence. For clustering images in large datasets,
the computational time required is remarkably high. Hence, a
scheme to reduce n, d, and k is illustrated in this work.

3. PROPOSED SCHEME

The computational time for clustering images could be sig-
nificantly reduced by reducing a total number of keypoints
(n), reducing dimension (d) of the feature descriptors, and re-
ducing the number of visual words (k). Significant reduction
in visual word count could severely affect clustering perfor-
mance and hence it is not preferred. However, keypoints
could be partitioned into contextual bins and dictionaries
could be generated for each bin in parallel, resulting in a
reduction in visual word count associated with each bin. The
proposed approach for simple keypoint reduction, the re-
duced dimensional variants of SIFT and SURF descriptors,
and partitioned contextual dictionary generation is described
in this section.

(a) (b) c)(

Fig. 1: (a) Original Image, (b) Actual keypoint set (n = 1382)
(c) Uniformly distributed reduced keypoint set (nr = 125).

3.1. Reducing Total Number of Keypoints

In general, the cardinality of keypoint set is in the order of
103 to 104 (depends on image size and content) [11]. For
fast feature matching, it is desirable to restrict the maximum
number of keypoints for each image. It is observed that the
SIFT keypoints are densely spaced and an excessive number
of keypoints provides only marginal enhancement in match-
ing performance to justify the high computational cost. In
effect, a smaller set of uniformly distributed keypoints is cho-
sen. The keypoints are suppressed based on the keypoint
strength (lower σ value represents lower strength), and only
those having maximum strength in the predefined region are
retained. To illustrate this, let us consider an image of resolu-
tion H ×W , with n and nr denoting the actual and reduced
number of keypoints respectively. For pruning keypoint set,
the image containing multiple keypoints is divided into a rect-
angular grid of size h × w. Real-valued grid size parameters
h and w are calculated using (1).

h =
H

s
, w =

W

s
, s = b

√
nrc (1)

For each rectangular grid, only one keypoint with the
highest strength (σ value) is chosen. This process not only
resulted in the uniform distribution of keypoints but also sig-
nificantly pruned a cardinality of keypoint set. The example
of SIFT keypoint pruning is shown in Fig. 1.

3.2. Reducing SIFT and SURF Descriptor Dimension

Fig. 2 (a) depicts the standard 128 dimensional (128D) SIFT
descriptor that distinctively describes the keypoint. To reduce
the dimension of SIFT descriptor, the 4 × 4 sub-regions are
combined such that, orientation histogram bins in the same di-
rections are accumulated. The different combinations of com-
bining these sub-regions resulted in different variants of SIFT
descriptor. The three variants of the descriptor with differ-
ent dimensions: {64D, 32D, 8D} are shown in Fig. 2 (b) to
(d). The procedure to reduce the SIFT descriptor dimension
is illustrated in Table 1.

For example, 8D descriptor (Fig. 2 (d)) is formed by ac-
cumulating orientation histogram bins as follows. Here, each
one of the sixteen sub-region is represented by total 8 orien-
tations. Let d = {d1, d2, d3, .., d128} be the standard 128D
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(a) 128D SIFT (b) 64D SIFT c) 32D SIFT (d) 8D SIFT(

Fig. 2: (a) Standard 128D SIFT, (b) 64D, (c) 32D, (d) 8D.

Table 1: Description of three variants of SIFT descriptor.

SIFT Description

64D
Combine corner and neighboring boundary sub-regions (8 × 4 =
32D), and retain central 2× 2 sub-regions (8× 4 = 32D)

32D Combine corner and neighboring sub-regions (8× 4 = 32D)
8D Combine all sub-regions (8D), refer Fig. 2 (d)

SIFT descriptor such that {di∗8−7, di∗8−6, di∗8−5.., di∗8} de-
note the orientations corresponding to the ith sub-region.
Then, the compact 8D feature descriptor c = {c1, c2, .., c8}
is obtained as follows:

c =

{
16∑
i=1

di∗8−7,

16∑
i=1

di∗8−6, ..,

16∑
i=1

di∗8

}
(2)

The similar dimensionality reduction scheme is applied
to SURF descriptor. SURF has only 4 values correspond-
ing to each sub-region unlike SIFT, which has 8 orientation
bins. The three variants of SURF descriptor with different
dimensions: {32D, 16D, 4D} are obtained by accumulating
sub-regions in a similar way as shown in Fig. 2 (b) to (d).

Due to the reduction in the dimension of SIFT and SURF
descriptor in this way, the local features tend to be more
global while they are highly distinctive yet. The distinctive-
ness of the descriptor is preserved by accumulating orienta-
tion bins corresponding to the same directions.

3.3. Partitioned Contextual BoF Approach

The main objective of the BoF approach is to form a dictio-
nary of visual feature descriptors. The keypoint set for a par-
ticular image is partitioned into predefined subsets based on
the strength (σ values) of the keypoints (higher σ value indi-
cates higher strength). Let keypoint set u be partitioned into
j subsets such that each subset contains an equal number of
keypoints. Then the more appropriate way of dictionary for-
mation is to form separate dictionaries for each subset and
combine those to obtain the overall dictionary. The concep-
tual illustration of the proposed scheme is shown in Fig. 3.

4. EVALUATION METHODOLOGY

4.1. Data Sets

For experiments, we generated N = 3000 test images. For
this, X = 30 different classes with each class containing 5
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Fig. 3: A conceptual illustration of proposed scheme.

Table 2: Type of alterations applied to each image. The num-
ber in the parenthesis represents a total number of images gen-
erated for each type of alteration.

Alteration Description
scale scale by×0.5,×0.75,×2 (3)
rotate rotate by 90◦, 180◦, 270◦ about its center (3)
crop crop 90%, 75%, preserve center region (2)
intensity change intensity by±25,±50 units (4)
blur apply Gaussian blurring by σ = {1, 2, 5} (3)
noise add 1% salt and pepper noise (1)

rotate+crop rotate by 180◦ about its center and crop 75%, preserve center
region (1)

scale+rotate scale by×0.75 and rotate by 180◦ about its center (1)
scale+crop scale by×2 and crop 75%, preserve center region (1)

near-duplicate images (with slightly varying viewpoints) re-
sulting in total 150 photos are chosen from California-ND
dataset [21]. Then, 20 alterations are applied to each of them,
resulting in a total of 100 images in each class. All the test
images are first converted to gray-scale before applying alter-
ations. The list of alterations similar to that of the works in
[22] is described in Table 2. Each image in the dataset has a
spatial resolution of 1024× 768 or 768× 1024 pixels.

4.2. Performance Measure Metric

F-measure is employed to empirically demonstrate the effec-
tiveness of the proposed scheme for image clustering. The
mean F1 score is extensively used to measure clustering ac-
curacy using two statistical parameters: precision (p) and re-
call (r). Precision and recall, computed for each class, are the
ratio of true positives (tp) to all predicted positives (tp+fp)
and ratio of true positives (tp) to all actual positives (tp+fn),
respectively, as in (3).

p =
tp

tp+ fp
, r =

tp

tp+ fn
(3)

where fp and fn represents false positives and false neg-
atives, respectively. The F1 score is calculated for each class
and average of these F1 scores resulted in mean F1 score
(mF1) as in (4).

F1 = 2
pr

p+ r
, mF1 = mean(F1) (4)

The F1 score weights precision and recall equally. The
score mF1 ∈ [0, 1], with 1 representing perfect clustering.

3134



For computational complexity analysis, speed-up over tra-
ditional SIFT is computed for all pruned combinations and it
is computed as:

Speedup =
Computational T imetraditional SIFT
Computational T imepruned approach

(5)

All the experiments are implemented in MATLAB 2015a
running on 64-bit Windows 7 platform with Intel Xeon(R)
CPU E3-1215 v5 @ 3.30 GHz with 8.0 GB RAM.

5. EXPERIMENTAL RESULTS

The simulation results for different combinations of keypoint
set, descriptor dimension, and partitioned contextual dictio-
nary generation are illustrated in Table 3. For experiments,
the visual word count of K = 300 is empirically chosen. The
support vector machine (SVM) is used for multiclass classi-
fication trained using the one-versus-all rule. The parameters
of SVM are empirically set and kept fixed for all the tests.

It is observed in Table 3 that reducing cardinality of the
keypoint set does not significantly affect clustering accuracy.
Among {25, 50, 100, 200, All} cardinalities of the keypoint
set, the cardinality of 100 provided a trade-off between com-
putational cost and clustering accuracy. Experiments on the
benchmark datasets show that selecting distributed keypoints
in this way, as compared to selecting keypoints based on
global maximum strength, provides better accuracy.

Among all SIFT variants, standard 128D SIFT, as ex-
pected, outperformed others. The 64D SIFT descriptor
achieved clustering accuracy at par with 128D SIFT and
outperformed traditional 64D SURF. It is also observed that
a further decrease in the descriptor dimension resulted in a
marginal reduction in accuracy, but significant speed-up is
achieved.

We have compared results for traditionally adopted non-
partitioned dictionary generation against proposed partitioned
contextual BoF approaches. The results for no, 2, and 3 parti-
tions, illustrated in Table 3 depicts that partitioned dictionary
generation provided clustering performance at-par with tradi-
tional BoF approach, but at much higher speed.

The standard 128D-SIFT and 64D-SURF is used to study
the effect of pruning keypoint set, whereas the effect of reduc-
tion in descriptor dimension is analyzed at fixed cardinality of
keypoint set nr = 100. Fig. 4 clearly depicts that the cluster-
ing performance is least affected when the keypoint set is re-
duced as compared to the effect of reduction in the descriptor
dimension. Moreover, the partitioned dictionary resulted in
inferior performance due to sub-optimal visual word creation.
However, employing all the three techniques simultaneously
resulted in 121 thousand times speed-up but provided only
86% accuracy. Hence, the appropriate combination should
be chosen based on the accuracy versus speed trade-off. For
the very tight computational budget, selection of at least 25

Table 3: SIFT Vs SURF Clustering Performance.

No Partition 2 Partitions 3 Partitions
D N mF1 Speedup mF1 Speedup mF1 Speedup

SI
FT

128D All 0.9956 1 0.9814 4.1 0.9644 12.7
128D 200 0.9933 69 0.9811 388 0.9629 802
128D 100 0.9933 279 0.9793 1238 0.9600 2963
128D 50 0.9933 1197 0.9789 4522 0.9522 12866
128D 25 0.9915 3908 0.9763 3908 0.9311 39477
64D 100 0.9900 453 0.9758 2117 0.9589 6065
32D 100 0.9833 572 0.9742 3634 0.9489 7962

8D 100 0.9800 1063 0.9689 5003 0.9256 12771
8D 50 0.9789 3337 0.9456 17052 0.8867 39633
8D 25 0.9767 11526 0.9386 52817 0.8600 121868

SU
R

F

64D All 0.9861 2.3 0.9728 8.9 0.9546 27.4
64D 200 0.9823 132 0.9701 388 0.9521 1723
64D 100 0.9811 567 0.9698 1238 0.9515 6095
64D 50 0.9807 2402 0.9683 4522 0.9507 27602
64D 25 0.9789 8132 0.9672 3908 0.9492 87497
32D 100 0.9800 953 0.9690 2117 0.9510 13052
16D 100 0.9733 1123 0.9611 3634 0.9438 19042

4D 100 0.9200 2274 0.8964 5003 0.8216 28438
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Fig. 4: SIFT Vs SURF performance comparison where 0P,
2P, and 3P corresponds to No, 2, and 3 partitions respectively.

number of keypoints and use of 8D SIFT descriptor is recom-
mended. The similar results are obtained for SURF as well.

6. CONCLUSION

A simple technique to reduce cardinality of keypoint set by
selecting uniformly distributed features and three variants of
reduced dimensional SIFT and SURF descriptor is presented.
Additionally, partitioned contextual dictionary generation is
proposed to further reduce the computational complexity of
visual word dictionary generation. Experimental results show
that pruning keypoint set to only 1% of the original keypoint
set provides less than 0.5% decrease in the clustering perfor-
mance. Moreover, reducing the dimension of the descriptor to
only 8D of the traditional SIFT descriptor provides less than
1.5% decrease in the clustering performance. It is noted that
pruning SIFT and SURF does not significantly affect the dis-
criminating capability of SIFT and SURF features. The future
work would be to evaluate the proposed technique for a larger
set of near-duplicate and normal image collection.
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