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ABSTRACT

Feature selection and reducing the dimensionality of data is an es-
sential step in data analysis. In this work we propose a new criterion
for feature selection that is formulated as conditional information be-
tween features given the labeled variable. Instead of using the stan-
dard mutual information measure based on Kullback-Leibler diver-
gence, we use our proposed criterion to filter out redundant features
for the purpose of multiclass classification. This approach results
in an efficient and fast non-parametric implementation of feature se-
lection as it can be directly estimated using a geometric measure
of dependency, the global Friedman-Rafsky (FR) multivariate run
test statistic constructed by a global minimal spanning tree (MST).
We demonstrate the advantages of our proposed feature selection
approach through simulation. In addition the proposed feature se-
lection method is applied to the MNIST data set.

Index Terms— Feature selection, conditional mutual informa-
tion, geometric nonparametric measure, global minimal spanning
tree, Friedman-Rafsky test statistic.

1. INTRODUCTION

Feature selection has been widely investigated in various fields such
as machine learning, signal processing, pattern recognition, and data
science. The goal of feature selection is to select the smallest possi-
ble feature subset that preserves the information in the original high
dimensional feature set. In the classification context, the problem is
to find the feature subset of minimum cardinality that preserves the
information contained in the whole set of features with respect to
class/label set C = {c1, c2, . . . , cm}. This problem is often solved
by using a criterion that distinguishes between the relevant features
and the irrelevant ones. There are three main types of feature selec-
tion methods: 1) wrapper [1], 2) embedded [2], and 3) filter methods
[3]. Filter methods are relatively robust against overfitting, but may
fail to select the best feature subset for classification or regression.
Feature selection performance is usually measured in terms of the
classification error rate obtained on a testing set. For instance con-
sider the feature set X = {X(1),X(2), . . . ,X(d)} with class set
C = {c1, c2, . . . , cm}. Hellman and Raviv (1970) [4] obtained an

upper bound,
1

2
H(C|X) =

1

2
(H(C)− I(C;X)), on minimum

Bayes classification error, where H and I are the entropy and the
mutual information respectively [5, 6]. For fixed entropy H(C) this
upper bound is minimized when the mutual information between C
and X is maximized. This intuition inspired researchers to employ
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I(C;X) maximization to select the most informative feature sub-
sets.

Intuitively, a given feature is relevant when either individually
or together with other variables, it provides high level of informa-
tion about the class C. We measure the relevancy between fea-
tures given the class label C = ck by a conditional dependency
measure R between X(i) and X(j), for all k = 1, 2, . . . ,m and
1 ≤ i < j ≤ d. The proposed measure of conditional dependency
between features is novel. We incorporate prior class probabilities
by taking weighted average of conditional dependencies where the
priors are the weights:

m∑
k=1

P (C = ck)R(X(i);X(j)|C = ck). (1)

Here R is a dependency measure and represents the relevance be-
tween two features X(i) and X(j). The objective is to find the fea-
tures that have maximum conditional dependency i.e. maximizing
(1), so that they can be dropped. In other words, the dependency
measure given in (1) is sorted and features with higher total pairwise
measures are filtered out. Later in this work we apply a geometric
interpretation of a nonparametric measure called the R metric, and
show that (1) is the conditional geometric mutual information (GMI)
I(X(i);X(j)|C), proposed in [7]. The main motivation for using
GMI is the ability to estimate it directly without density estimation.
The GMI estimator we propose in this paper is simple to implement
and faster than plug-in approaches [8, 9, 10, 11] and standard pair-
wise class MI approaches [12]. The empirical estimator involves the
construction of a global MST spanning over both the original data
and a randomly permuted version of this data within each class.

The rest of the paper is organized as follows. Section 2 briefly
reviews related work on feature selection and dimensionality reduc-
tion. Section 3 defines the geometric nonparametric measure named
conditional geometric mutual information (GMI). A novel global
class-based Friedman-Rafsky statistic is proposed in Section 4 and
we prove that this statistic estimates the conditional GMI when the
samples sizes of all classes increases simultaneously in a specific
regime. Section 5 is dedicated to the numerical studies and real data
set experiments. Finally, Section 6 concludes the paper.

2. RELATED WORKS

Several methods for dimensionality reduction have been proposed in
the literature. One well known linear transform for dimensionality
reduction is principal component analysis (PCA) [13]. This tech-
nique has been studied in wide range of papers and is well-developed
in various areas of Machine Learning and Signal Processing. Tech-
niques like PCA are unsupervised learning methods and do not use
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the class labels. This is a drawback because the information from
class labels is ignored. Furthermore, PCA is only sensitive to linear
dependencies. The mutual information between the class labels and
the transformed data is an alternative technique that leverages the
class labels and overcomes the PCA limitations [6]. However, plug-
in based Mutual Information methods require probability density es-
timation [14, 11, 15] which is computationally expensive. Berisha et
al. [16] proposed a direct estimation of the Bayes error rate bounds.
This estimation method was used to select features. We compare our
method to a multi-class extension of Barisha et al.

Recently, there have been a number of attempts to non-parametrically
approximate divergence measures and in particular, the mutual in-
formation, using graph-based algorithms such as minimal spanning
tree (MST), [17, 18] and k-nearest neighbors graphs (k-NNG),
[19, 20]. Lately the direct estimator based on Friedman-Rafsky (FR)
multivariate test statistic [21] has received attention. This approach
is constructed from the MST on the concatenated data set drawn
from sufficiently smooth probability densities. Henze and Penrose
[22, 23, 16] showed that the FR test is consistent against all alter-
natives. A further development on the graph-based approaches for
multi-class classification (multi-labeled algorithms) is to construct a
global graph over the entire data instead of pairwise subsets. This
approach and its advantages in multi-classification problem have
been studied in [12]. We extend [12] to estimate conditional mu-
tual information given class labels, which is then used for feature
selection.

3. GEOMETRIC NONPARAMETRIC MEASURE

In this section we propose a novel dependency measure called geo-
metric conditional mutual information.

Let X(i) be the i’th component of a d dimensional random vec-
tor X = {X(1),X(2), . . . ,X(d)}. Consider label variable Y corre-
sponding to class c1, c2, . . . , cm that takes values {1, 2 . . . ,m}. Let
py = P (Y = y) for y = 1, 2, . . . ,m such that

∑
y

py = 1.

We use notation πij for the joint distribution ith and jth components
when X(i), X(j), and Y form a Markov chain, X(i) → Y → X(j),
i.e. random vectors X(i) and X(j) are conditionally independent
given label variable Y ,

πij := π(X(i),X(j)) =
∑
y

pyf(x(i)|y)f(x(j)|y). (2)

The joint distribution X(i) and X(j) is given by

fij := f(x(i),x(j)) =
∑
y

pyf(x(i),x(j)|y). (3)

Denote G(x(i),x(j)|y) =
f(x(i),x(j)|y)f(x(i)|y)f(x(j)|y)

f(x(i),x(j)|y) + f(x(i)|y)f(x(j)|y)
.

(4)
Recall the conditional geometric mutual information (GMI) from
[7]: for continuous random variables X(i), X(j) and discrete Y , the
conditional GMI measure given Y is defined by

I(X(i);X(j)|Y ) = EY

[
I(X(i);X(j)|Y = y)

]
=

∑
y

pyI(X(i);X(j)|Y = y),
(5)

where

I(X(i);X(j)|Y = y) = 1− 2

∫∫
G(x(i),x(j)|y) dx(i)dx(j).

(6)
We define a measure based on joint probability densities fij and πij :

δ(ij)
yz =

∫∫
f(x(i),x(j)|y)f(x(i)|z)f(x(j)|z)
f(x(i),x(j)) + π(x(i),x(j))

dx(i)dx(j). (7)

The following theorem derives a lower bound for I(X(i);X(j)|Y ).
This bound will be used from now on instead of the conditional mu-
tual information (CMI) to be maximized. For feature selection, we
filter out the features with the highest CMI measures.

Theorem 1 Consider conditional probability densities f(x(i),x(j)|y),
f(x(i)|y), and f(x(j)|y) with priors py y = 1, 2, . . . ,m. Then the
conditional GMI between features X(i) and X(j) given label vari-
able Y is lower bounded by

I(X(i);X(j)|Y ) ≥ 1− 2
∑
y

∑
z

pypzδ
(ij)
yz . (8)

Proof: We note that the conditional GMI I(X(i),X(j)|Y = y) in
(6), this information can be written in terms of Henze-Penrose (HP)

divergence [22] when p =
1

2
denoted by D1/2:

I(X(i),X(j)|Y = y) = D1/2

(
f(x(i),x(j)|y), f(x(i)|y)f(x(j)|y)

)
.

(9)
Therefore, the GMI in (5) is written in terms of D1/2 as follows:

I(X(i),X(j)|Y ) =
∑
y

pyI(X(i),X(j)|Y = y)

=
∑
y

pyD1/2

(
f(x(i),x(j)|y), f(x(i)|y)f(x(j)|y)

)
.

(10)

From [24] we know that the f -divergence function is convex. Since
HP-divergence belongs to the f -divergence family, we then have

I(X(i),X(j)|Y )

≥ D1/2

(∑
y

pyf(x(i),x(j)|y),
∑
y

pyf(x(i)|y)f(x(j)|y)

)
.

(11)
By definition of joint probability densities fij and πij in (3) and (2)
respectively, the RHS in (11) is D1/2 (fij , πij). In addition we have

D1/2 (fij , πij) = 1− 2
∑
y

∑
z

pypzδ
(ij)
yz . (12)

This completes the proof of Theorem 1. �
In the next section an estimation of the RHS of inequality (8) is

proposed.

4. ESTIMATION

In this section, we introduce a new algorithm which estimates δ(ij)
yz

directly without requiring density estimates. The estimator is con-
structed based on the global MST [12], and the random permuted
sample [7]. The approach is called geometric conditional MI (GMI)
and is summarized in Algorithm 1. The next theorem asserts that our
proposed estimator approximates δ̂(st)

y,z when the number of samples
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Algorithm 1 Global FR estimator of δ(st)
yz

Input: Data set Z2n := (X
(s)
2n ,X

(t)
2n ,Y2n),

{
(x

(s)
i ,x

(t)
i ,yi)

2n
i=1

}
,

Y ∈ {y1, y2, . . . , ym}, m = #{y1, y2, . . . , ym}
1: Divide Z2n into two subsets Z′n and Z′′n

2: Partition Z′n into m subsets Z′n′
1|z1

,Z′n′
2|z2

, . . . ,Z′n′
m|zm

ac-
cording to Y ∈ {z1, z2, . . . , zm} with sizes n′1, n′2, . . . , n′m

3: Partition Z′′n into m subsets based on different values
{y1, y2, . . . , ym} denoted by Z′′n|y1 ,Z

′′
n|y2 , . . . ,Z

′′
n|ym , such

that Z′′n =
m⋃
i=1

Z′′n|yi . Denote ni = #Z′′n|yi and n =

m∑
i

ni

4: Z̃ni|yi ←
{

(x
(s)
yi,k

,x
(t)
yi,k

)ni
k=1 selected in random from Z′′ni|yi

}
5: Ẑ2n ←

(
m⋃
j

Z′n′
j |zj

)⋃(m⋃
i

Z̃ni|yi

)
= Z′n ∪ Z̃n

6: Construct MST on Ẑ2n

7: Rzj ,yi ← # edges connecting a node in Z′n′
j |zj

to a node of

Z̃ni|yi

8: δ̂(st)
yi,zj ←

(
n

2 n′j ni

)
Rzj ,yi

Output: δ̂(st)
y,z

from each label class tends to infinity. Due to space limitations only
a sketch of the proof is given. Denote Rzj ,yi the FR statistic between
original sample with label zj and random permutations sample with
label yi.

Theorem 2 Let y ∈ {y1, . . . , ym} and z ∈ {z1, . . . , zm}, with
n′j → ∞, ni → ∞, n → ∞ such that n′j/n → pzj , ni/n → pyi .
Then (

n

2 n′j ni

)
Rzj ,yi −→ δ(st)

yi,zj (a.s.) (13)

Proof: The following lemma will be required. It is a consequence
of Lemma 5.2 in [7].

Lemma 1 Consider the realization Z2n := (X
(s)
2n ,X

(t)
2n ,Y2n),{

(x
(s)
i ,x

(t)
i ,yi)

2n
i=1

}
where Y is a discrete random variable Y

taking values in the set {y1, y2, . . . , ym}. Following notations in
Algorithm 1, let Z̃ni|yi be a set having components selected at ran-
dom from Z′′ni|yi . Then n → ∞, for all classes i ∈ {1, . . . ,m} the

Z̃ni|yi =
{

(x
(s)
yi,k

,x
(t)
yi,k

)ni
k=1

}
has conditional probability densities

f(x(s)|yi)f(x(t)|yi).

Now to prove Theorem 2, recall the sets Z′n and Z̃n from
Algorithm 1 and let Z′n′

j |zj
and Z̃ni|yi have the joint proba-

bility densities f(x(s),x(t)|zj) and f̃(x(s),x(t)|yi) such that
from Lemma 1 when n tends to infinity and ni → ∞ then
f̃(x(s),x(t)|yi) → f(x(s)|yi)f(x(t)|yi). Let Mn′

j
and Nni be

Poisson variables with mean n′j and ni respectively, for i, j =
1, 2, . . . ,m and independent of one another and of Z′n′

j |zj
and

Z̃ni|yi . Let Ẑ2n = Z′n ∪ Z̃n. Denote Rzj ,yi the FR test statistic
constructed by using global MST over Z′n∪Z̃n. Construct the global

MST over

(
m⋃
j

Z
′
zj

)⋃(m⋃
i

Zyi

)
. Let Rzj ,yi := R(ij)(Z

′
zj ,Zyi)

be FR test statistic. It is sufficient to prove

E
[
Rzj ,yi

]
2n

−→ pzjpyiδ
(st)
zj ,yi . (14)

For n̄ = (n′1, n
′
2, . . . , n

′
m, n1, n2, . . . , nm), such that

m∑
l

n′l =

m∑
l

nl = n, Let Wn̄
1 ,W

n̄
2 , . . ., be independent vectors with com-

mon densities, gn(x(s),x(t))

(2n)(−1)

(∑
zj

n′jf(x(s),x(t)|zj) +
∑
yi

nif̃(x(s),x(t)|yi)

)
.

(15)
Next let Ln be an independent Poisson variable with mean 2n. We
prove (14) for R̃zj ,yi which is the FR statistics for a m marked
points. Given points of F′n at z = (x(s),x(t)) and z̄ = (x̄(s), x̄(t))
the probability that they have different marks in {z1, z2, . . . , zm}
and {y1, y2, . . . ym} is given by

Gn(z, z̄) :=
n′jf(z|zj)nif̃(z̄|yi) + n′jf(z̄|zj)nif̃(z|yi)

Kn(z) Kn(z̄)
, (16)

where
Kn(z) =

∑
zj

n′jf(z|zj) +
∑
yi

nif̃(z|yi).

Set

G(z, z̄) :=
pzjpyi (f(z|zj)π̃(z̄|yi) + f(z̄|zj)π̃(z|yi))

K(z) K(z̄)
, (17)

where
K(z) =

∑
zj

pjf(z|zj) +
∑
yi

piπ̃(z|yi),

and π̃(z|yi) = f(x(s)|yi)f(x(t)|yi). We observe that Gn(z, z̄) →
G(z, z̄) as they range in [0, 1]. For zj < yi

E
[
R̃zj ,yi |F′n

]
=

∑∑
1≤t<l≤Ln

Gn(Wn̄
t ,W

n̄
l )1
{

(Wn̄
t ,W

n̄
l ) ∈ F′n

}
.

(18)
By taking the expectation (18) we can write

E
[
R̃zj ,yi

]
= o(2n)

+E
∑∑

1≤t<l≤Ln

G(Wn̄
t ,W

n̄
l )1
{

(Wn̄
t ,W

n̄
l ) ∈ F′n

}
.

(19)

By taking into account the non-Poisson process, we have

E
[
R̃zj ,yi

]
= o(2n)

+E
∑∑
1≤t<l≤2n

G(Wn̄
t ,W

n̄
l )1
{

(Wn̄
t ,W

n̄
l ) ∈ Fn

}
.

(20)

Introduce g(x(s),x(t)) as

= (2)(−1)

(∑
zj

pjf(x(s),x(t)|zj) +
∑
yi

pif(x(s)|yi)f(x(t)|yi)

)
.

(21)
We can write that gn(x(s),x(t)) → g(x(s),x(t)). Consequently by
proposition 1 in [22], we have

E
[
R̃zj ,yi

] /
2n→

∫
G(z, z)g(z)dz

And this proves Theorem 2. �
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Fig. 1. Convergence in MSE of CMI lower bound estimator for d =
2. The MSE for samples drawn from three sets of distributions with
m = 2, 5, 10 normal distributions in each set (µ = 0.5). The results
were averaged over 50 iterations.
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Fig. 2. Relative runtime of pairwise Dp method for m classes and
proposed Geometric CMI algorithm vs. sample size. For large class
our proposed method offers significantly faster runtime.

5. EXPERIMENTS

In this section we perform multiple experiments to validate our the-
ory and to demonstrate the utility of our proposed feature selection
algorithm on MNIST data set. We use the maximum lower bound on
the conditional mutual information in (5) as a proposed measure to
filter irrelevant features. In the following simulation we first analyze
the proposed estimator of the CMI lower bound. We draw samples
from three sets of distributions with m = 2, 5, 10 normal distribu-
tionsN (µi, 0.1I) in each set, where µ = 0.5 and µi as in Section IV
[12]. The sample size for all classes are equal. Fig 1 shows the MSE
between the estimated and oracle lower bound on CMI as a function
of total sample size N , for different labels m = 2, 5, 10. The be-
havior of MSE in terms of N is clear but note that as the number of
labels grow the MSE increases, too. This means that as the number
of labels increases, more samples are required to estimate the CMI
bound accurately.

One of our main motivations for the GMI for feature selection
is less computational complexity. Hence an experiment was per-
formed, Fig 2, to compare the runtime of our method with that of
Berisha et al’s method [16]. Subsequently, we utilize our proposed
method to explore feature selection for the MNIST data set. The
MNIST data set consists of grey-scale images, 28 x 28 pixels, of
hand-written digits 0 - 9. In this experiment, first we use PCA on

2000 training images to reduce the feature dimensions and detect
latent features. We consider the first 30 principle components and
implement our proposed method on this subset. The pairwise Dp al-
gorithm where the training and test data have the same distribution is
applied to select features with minimum total multi-class Bayes er-
ror upper bound given in Theorem 2 [16]. Next we show the results
of applying the CMI estimator and two state-of-the-art feature selec-
tion methods Linear Support Vector Classification (LSVC) [25, 26]
and tree-based method (Extra-Tree-Classifier (ETC)) [27] to MNIST
data sets for various sample sizesN = 100, 300, 400. Table 1 shows
the general FR test statistics (denoted by GMI) and total estimated
pairwise upper bounds for Bayes Error (denoted by Dp). Fig 3 shows
a comparison of the average classification as a function of feature
set size between GMI approach, Dp criteria, LSVC, and ETC ap-
proaches. We applied a multi-class SVM to measure classification
accuracy on training data of size 104. The generalized FR test statis-
tic for smaller size of feature sets, selects the features with higher
average accuracy (after 10 runs). Observe that both GMI and Dp
approaches outperform LSVC and ETC methods.

Number of Features Algorithms Number of Training Sample
100 300 500

10 GMI 61.48 61.47 60.43
Dp 57.31 51.57 55.53

LSVC 20.00 5.99 8.40
ETC 10.69 6.00 7.09

15 GMI 70.01 69.94 66.48
Dp 64.86 69.90 71.71

LSVC 22.26 9.86 10.51
ETC 22.26 9.84 10.51

20 GMI 73.99 73.94 72.27
Dp 78.95 77.83 76.77

LSVC 22.4 9.92 13.42
ETC 24.67 9.93 12.77

Table 1. Average Classification Accuracies of Top Features Selected
by GMI and pairwise Dp statistic.
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Fig. 3. A comparison of the average classification as a function of
feature set size using both the GMI and Dp criteria.

6. CONCLUSION

In this paper, we proposed a new technique to select features via
maximizing conditional dependency between features given the
variable. We derived a lower bound for a geometric dependency
measure, the conditional geometric mutual information (GMI). We
showed that using a global FR statistic derived from a global MST
the lower bound can be estimated directly. This estimator has low
computational complexity. We demonstrated that our proposed al-
gorithm and Dp estimator are more accurate than LSVC and ETC
methods when applied to feature selection on the MNIST data set.
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