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ABSTRACT

We propose a distributed differentially-private canonical correlation
analysis (CCA) algorithm to use on multi-view data. CCA finds a
subspace for each view such that projecting the views onto these sub-
spaces simultaneously reduces the dimension and maximizes corre-
lation. In applications involving privacy-sensitive data, such as med-
ical imaging, distributed privacy-preserving algorithms can let data
holders maintain local control of their data while participating in
joint computations with other data holders. Differential privacy is a
framework for quantifying the privacy risk in such settings. How-
ever, conventional distributed differentially-private algorithms intro-
duce more noise to guarantee a given level of privacy compared to
their centralized counterparts. Our differentially-private CCA em-
ploys a noise-reduction strategy to achieve the same utility level as
CCA on centralized data. Experiments on synthetic and real data
show the benefit of our approach over conventional methods.

Index Terms— differential privacy, canonical correlation anal-
ysis, multi-view learning, clustering, distributed data

1. INTRODUCTION

Many signal processing and machine learning algorithms operate on
private or sensitive data and can leak information about individuals
present in the data set. Differential privacy [1] (DP) quantifies pri-
vacy risk in such settings: DP learning algorithms attempt to produce
estimates of population properties that do not have a strong depen-
dence on individual data points.

When private data is distributed over different locations or sites,
DP algorithms can allow sites (data holders) holding a smaller num-
ber of samples to jointly learn features from the aggregate data.
One example comes from neuroimaging: many research groups may
study the same mental health disorder but each group may have a
modest number of subjects at best. However, learning meaningful
population properties or efficient feature representations from high-
dimensional functional magnetic resonance imaging (fMRI) data re-
quires a large sample size. Pooling the data at a central location
may enable efficient feature learning, but privacy concerns and high
communication overhead often prevent such sharing. Additionally,
conventional distributed DP algorithms suffer from more noise for
a given privacy level when compared to their centralized counter-
parts. Therefore, it is desirable to have efficient distributed privacy-
preserving algorithms that provide utility close to centralized case [2,
3].

Canonical correlation analysis (CCA) [4] is a tool for character-
izing linear relationships between two (or more) multidimensional
variables (or “views”). The views are typically different measure-
ments of the same physical phenomena. CCA finds the bases for
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each view such that the correlation matrix between the data projected
onto the bases is diagonal and the correlations on the diagonal are
maximized [5]. It has been used as a pre-processing step for dimen-
sionality reduction in high-dimensional clustering, statistical analy-
sis, medical studies and recently in machine learning, neuro-science
and signal processing [6, 7, 5, 8]. The advantage of CCA over princi-
pal component analysis (PCA) or random projections [9, 10, 11, 12]
is that CCA can jointly learn projection maps to improve clustering
performance for multi-view learning [13, 14]. CCA also has applica-
tions in blind source separation, such as in fMRI analysis [15, 6, 16].

We propose a decentralized version of our centralized differen-
tially private CCA [8] algorithm. We eliminate the excessive noise
problem of conventional distributed DP algorithms by employing a
correlated noise scheme. Such a system requires an honest third
party to generate the correlated noise, which is feasible in trust mod-
els such as those in medical research consortia. To our knowledge,
this paper proposes the first DP CCA algorithm for distributed set-
tings. We demonstrate our approach using synthetic and real data
sets to show how the utility/performance is affected by the privacy
risk, number of samples and some other key parameters. Simulation
results show that our distributed algorithm can achieve the same util-
ity as the pooled data scenario satisfying (ε, δ)-differential privacy.
For some parameter choices, our algorithm can achieve almost as
much utility as the non-private algorithm, showing that meaningful
privacy can (almost) come for free.

2. PROBLEM FORMULATION

Notation. We denote vectors, matrices and scalars with lower-case
bold-faced letters (e.g. x), upper-case bold-faced letters (e.g. X),
and unbolded letters (e.g. N ), respectively. We represent indices
with lower-case regular letters and they typically run from 1 to their
upper-case version (e.g. n ∈ [N ] , {1, 2, . . . , N}). We denote the
n-th column of a matrix X as xn. Finally, we use ‖ · ‖2, ‖ · ‖F and
tr(·) to denote the Euclidean norm of a vector (or spectral norm of a
matrix), the Frobenius norm, and the trace, respectively.
Distributed CCA. Consider a system with S different sites, each
holding disjoint data sets, and an untrusted central node or aggrega-
tor (see Fig. 1(a)). In site s ∈ [S], the data is a pair of sample ma-
trices Xs ∈ RDx×Ns and Ys ∈ RDy×Ns corresponding to the two
“views” of the same physical phenomena. The n-th column of Xs

and Ys, denoted xs,n and ys,n, respectively, are the n-th samples
from view 1 and view 2. For simplicity, we assume that the observed
samples are mean-centered. The sample size in site s is Ns and we
denote N =

∑S
s=1Ns as the total number of samples over all sites.

If we had all the samples at the central aggregator (pooled data sce-
nario), then the data matrices would be X = [X1 . . .XS ] ∈ RDx×N

and Y = [Y1 . . .YS ] ∈ RDy×N . The CCA projection vectors
are defined to be the columns of the matrices U ∈ RDx×K and
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Fig. 1. Structure of the network: conventional and capeCCA

V ∈ RDy×K that solve the following problem [4, 17, 13]:

minimize
U,V

‖U>X−V>Y‖2F

subject to
1

N
U>XX>U = I,

1

N
V>YY>V = I,

1

N
U>XY>V = I,

where I is the K × K identity matrix with K ≤ min{Dx, Dy}.
The solution to the optimization problem [18] is given as fol-
lows: U∗ and V∗ contain the top-K eigenvectors of the matri-
ces C−1

xxCxyC
−1
yyCyx and C−1

yyCyxC
−1
xxCxy , respectively. Here,

the sample covariance and cross-covariance matrices are given by
Cxx = 1

N
XX>, Cyy = 1

N
YY> and Cxy = 1

N
XY> = C>yx.

We assume that we obtain samples as zs,n =
[
x>s,n y>s,n

]> ∈ RD ,
whereD = Dx+Dy . We compute theD×D positive semi-definite
sample covariance matrix of Z = [Z1 . . .ZS ] ∈ RD×N as

C =
1

N
ZZ> =

1

N

S∑
s=1

Ns∑
n=1

zs,nz
>
s,n and C =

[
Cxx Cxy

Cyx Cyy

]
.

Without loss of generality, we can ensure that ‖zs,n‖2 ≤ 1, because
canonical correlations are invariant with respect to affine transforma-
tions of the variables [5]. We are interested in approximating U∗ and
V∗ in a distributed setting while guaranteeing differential privacy. A
naı̈ve approach (non-privacy-preserving) would be to send the data
matrices Xs and Ys from the sites to the aggregator. The aggregator
can then compute C and subsequently U∗ and V∗. However, when
Dx, Dy and/or Ns are large, this results in a huge communication
overhead. Additionally, in many scenarios, the local data are private
or sensitive. As the aggregator is not trusted, sending the data to the
aggregator can result in a significant privacy violation. Our goals
are therefore to (i) ensure differential privacy, (ii) achieve the same
utility as the pooled data scenario in a distributed setting and (iii)
provide close approximations to the true CCA subspaces U∗, V∗.
Differential privacy. An algorithm A (D) taking values in a set T
provides (ε, δ)-differential privacy [1] if

Pr(A (D) ∈ S) ≤ exp(ε)Pr(A (D′) ∈ S) + δ, (1)

for all measurable S ⊆ T and all data sets D and D′ differing in a
single entry (neighboring data sets). This definition essentially states
that the probability of the output of A (D) is not changed signifi-
cantly if the corresponding database input is changed by one entry.
Here, ε and δ are privacy risk parameters: lower ε and δ ensure more
privacy. Note that δ can be interpreted as the probability that the
algorithm fails. For details, see the survey [19] or monograph [20].
Conventional distributed differentially-private CCA. To solve
for the optimal CCA subspaces U∗ and V∗, we need to compute
the sample covariance matrix C in the distributed setting. The con-
ventional privacy-preserving approach is for each site to use the An-
alyze Gauss method [21] to send an (ε, δ)-DP approximate Ĉs =

Algorithm 1 Distributed Differentially-private CCA (capeCCA)

Require: 0-centered samples Xs ∈ RDx×Ns and Ys ∈ RDy×Ns

as Zs =
[
X>s Y>s

]>
with ‖zs,n‖2 ≤ 1 for s ∈ [S]; privacy

parameters ε, δ; reduced dimension K
1: Generate Es ∈ RD×D , as described in text . at noise generator
2: Generate Fs ∈ RD×D , as described in text . at the aggregator
3: for s = 1, 2, . . . , S do . at the local sites
4: Get Es from the noise generator and Fs from the aggregator
5: Generate D ×D symmetric Gs, as described in text
6: Compute and send: Ĉs ← 1

Ns
ZsZ

>
s + Es + Fs + Gs

7: end for
8: Compute Ĉ← 1

S

∑S
s=1

(
Ĉs − Fs

)
. at the aggregator

9: Extract sub-matrices from Ĉ to compute Û∗ and V̂∗

10: return Û∗ and V̂∗

Cs + Es of the local sample covariance matrix Cs to the aggrega-
tor, where Cs = 1

Ns
ZsZ

>
s and Es is a D × D symmetric matrix

with {[Es]ij : i ∈ [D], j ≤ i} drawn i.i.d. from N (0, τ2s ). Here,

the noise standard deviation is given by τs = 1
Nsε

√
2 log( 1.25

δ
) us-

ing the L2-sensitivity [1] of Cs: ∆s = 1
Ns

[21] for the standard

Gaussian mechanism [20]. Upon receiving the matrices {Ĉs} from
the sites, the aggregator computes

Ĉ =
1

S

S∑
s=1

Ĉs =
1

S

S∑
s=1

Cs +
1

S

S∑
s=1

Es.

The variance of the estimator Ĉ is S · τ
2
s
S2 =

τ2s
S

, τ2ag. However,
if we had all the samples in one location (centralized or pooled-data
scenario), then the (ε, δ)-DP approximate of C can be computed as:
Ĉ = 1

N
ZZ> + E, where the D × D symmetric matrix E is gen-

erated with entries drawn i.i.d. ∼ N (0, τ2c ). In this case, the noise

standard deviation is given by τc = 1
Nε

√
2 log( 1.25

δ
), using the sen-

sitivity of C in the centralized case [8] as: ∆c = 1
N

. For equal
number of samples in each site, we have τc = τs

S
. We observe the

ratio: τ2c
τ2ag

=
τ2s /S

2

τ2s /S
= 1

S
. This indicates that the conventional DP

distributed scheme will always produce a sub-optimal (more noisy)
estimate of the matrix Ĉ. As computation of the CCA subspaces
is closely related to Ĉ, we can conclude that the conventional dis-
tributed DP scheme will have lower utility than that of a pooled data
scenario. In the next section, we describe an approach to remedy this
and achieve the same performance as the pooled data scenario in the
distributed setting.

3. PROPOSED DISTRIBUTED
DIFFERENTIALLY-PRIVATE CCA

Our proposed method, capeCCA, is described in Algorithm 1 and
exploits a particular network structure (see Fig.1(b)). This approach
employs a correlated noise design to achieve the same utility of the
pooled data case (i.e., τag = τc) in the decentralized setting. We
assume that at least two sites are honest and the rest (including the
aggregator) are honest-but-curious. The honest-but-curious parties
follow the protocol but may collude with an external adversary. All
communications are over secure channels and that there is an honest
third-party noise generator (as shown in Fig. 1(b)). The aggregator
also generates noise to be sent to the sites. Recall that in the pooled

3113



data scenario with no privacy requirements, we have the data matri-
ces X and Y. The samples are assumed to be the columns of the
matrix Z =

[
X> Y>

]>
. We can compute C = 1

N
ZZ>, extract

the sub-matrices Cxx, Cxy , Cyx and Cyy and compute the optimal
CCA subspaces U∗ and V∗. In our distributed setting, we need to
add noise to preserve privacy. We design the noise addition proce-
dure in such a way that we can ensure DP for the output from each
site and achieve the noise level of the pooled data scenario in the
final output from the aggregator. To achieve this, we start with the
noise generator. It generates theD×D matrix Es with [Es]ij drawn
i.i.d. ∼ N (0, τ2e ) and

∑S
s=1 Es = 0. The aggregator generates the

D×D matrix Fs with [Fs]ij drawn i.i.d. ∼ N (0, τ2f ). Finally, the
sites generate their own symmetricD×D matrix Gs, where [Gs]ij
are drawn i.i.d. ∼ N (0, τ2g ). At each site s, we compute the sample
second-moment matrix Cs = 1

Ns
ZsZ

>
s and release (or send to the

central aggregator): Ĉs = Cs+Es+Fs+Gs. The noise variances
of Es, Fs, Gs should ensure that the variance of the noise Fs+Gs

alone can guarantee (ε, δ)-DP to Cs, since the noise terms Es are
correlated. Additionally, the noise variances should ensure that the
variance of Es + Gs is sufficient to guarantee (ε, δ)-DP to Cs – as
a safeguard against the untrusted aggregator, which knows Fs [22].
One approach is to set τ2e = τ2f =

(
1− 1

S

)
τ2s and τ2g = 1

S
τ2s .

For a given pair of (ε, δ), we can calculate a noise variance τ2s such
that adding Gaussian noise of variance τ2s will guarantee (ε, δ)-DP.
Since there are many (ε, δ) pairs that yield the same τ2s , we parame-
terized our method using τ2s . Note that the noise generator need not
necessarily be a separate entity and can be considered as a common
randomness, or a shared coin possessed by the sites [22]. For ex-
ample, each site could generate Ês and, perhaps using some secure
multiparty computation protocol [23], compute

∑
s Ês. Each site

could then use Es ← Ês − 1
S

∑
s Ês to achieve

∑
sEs = 0. Now,

the aggregator computes

Ĉ =
1

S

S∑
s=1

(
Ĉs − Fs

)
=

1

S

S∑
s=1

(Cs + Gs) , as
S∑
s=1

Es = 0.

At the aggregator, the variance of the estimator is S · τ
2
g

S2 = S · τ
2
s
S3 =

τ2s
S2 = τ2c , which is exactly the same as if all the data were present
at the aggregator [22]. Next, we extract the sub-matrices Ĉxx, Ĉxy ,
Ĉyx and Ĉyy and compute the (ε, δ)-DP CCA subspaces Û∗ and
V̂∗. The privacy guarantee of capeCCA is given in Theorem 1.
Note that capeCCA can be readily extended to incorporate unequal
privacy requirements/samples sizes at each site [22]. We defer the
development of a more robust model with weaker assumptions as a
future work.

Theorem 1 (Privacy of capeCCA). Algorithm 1 computes an (ε, δ)-
DP approximation to the optimal subspaces U∗ and V∗.

Proof sketch. The proof of Theorem 1 follows from using the AG
algorithm [21], the sensitivity ∆s = 1

Ns
and recalling that the data

samples in each site are disjoint. We start by showing: τ2e + τ2g =

τ2g + τ2f = τ2s =
(

1
Nsε

√
2 log 1.25

δ

)2
. Therefore, the computation

of Ĉs at each site is at least (ε, δ)-DP. As differential privacy is in-
variant under post-processing, we can combine the matrices {Ĉs}
at the aggregator while subtracting Fs for each site. We extract the
sub-matrices Ĉxx, Ĉxy , Ĉyx and Ĉyy and compute the subspaces
Û∗ and V̂∗, which are (ε, δ)-DP approximates to the true CCA sub-
spaces U∗ and V∗.

Performance gain with correlated noise. This is the first work that
proposes an algorithm for distributed DP CCA. It can be shown that
as we employ the correlated noise scheme, the gain in the perfor-
mance over a conventional distributed DP CCA is atleast S, even
when we do not know Ns for s ∈ [S]. Moreover, in case of site
drop-out, the performance of capeCCA would fall back to that of
the conventional scheme [22]: the output from each site remains
(ε, δ)-DP, irrespective of the number of dropped-out sites.
Communication cost. capeCCA is an one-shot algorithm. The
noise generator and the aggregator both send oneD×Dmatrix to the
sites. Each site uses these to compute the noisy estimate of theD×D
matrix Ĉs and sends that back to the aggregator. Therefore, the to-
tal communication cost is proportional to 3SD2 or O(D2). This is
expected as we are computing the global D × D second-moment
matrix in a distributed setting for computing the CCA subspaces.

4. EXPERIMENTAL RESULTS

We consider measuring how well the output subspaces of capeCCA
algorithm, Û∗ and V̂∗, approximate the true subspaces U∗ and
V∗ achieved from pooled non-private CCA (non− priv). We have
also compared the performance of capeCCA against a conven-
tional (but never proposed before) distributed DP CCA algorithm
with no correlated noise (conv) and a centralized DP CCA [8] on
local data (local). We used three data sets for our experiments:
the MNIST data set [24], the University of Wisconsin X-ray Mi-
crobeam data set (XRMB) [25] and a simulated fMRI and EEG
data set (fMRI+EEG) [26]. For MNIST, we chose the two views
to be the top- and bottom-halves of the images, preprocessed by
projecting each view onto 50-dimensional subspaces using PCA.
For XRMB, we chose two speakers, JW16 and JW18, with the first
view being the pellet coordinates and the second view containing
acoustic features including the normalized 13-dimensional mel-
frequency cepstral coefficients (MFCCs) and their first and second
derivatives [13]. Each view is projected onto a 25-dimensional sub-
space using PCA [8]. We replicate the sample matrices p times in
our experiments. For generating the fMRI+EEG data set we fol-
low [26]. A simulated fMRI-like set of components was generated
following [27] using the simTB toolbox [28]. For EEG features, an
event-related potential (ERP)-like set of components was generated
using the EEGIFT toolbox [29]. We mixed each set with different
sets of modulation profiles to achieve the simulated fMRI and EEG
signals. The modulation profiles are orthogonal within each modal-
ity and correlated across different modalities. The relation between
the fMRI and EEG signals are due to these correlations. We used
K = 5 simulated components for both fMRI and EEG signals.
Each fMRI component is a 50× 50 pixel image, whereas each ERP
component is a 6360 time-point segment.

For the real data sets, we evaluate the quality of the subspaces
produced from the algorithms by using one of the most common
applications of CCA: clustering. We employ the popular K-means
clustering algorithm on the reduced-dimension samples (achieved by
projecting onto the CCA subspaces). We measure the performance
of clustering using [8] the Caliński-Harabasz (CH) index [30, 31] for
N data points and K clusters:

CH =
1

K−1

∑K
k=1Nk‖zk − z‖22

1
N−K

∑K
k=1

∑
n∈Sk

‖znk − zk‖22
,

where zk is the centroid of the k-th cluster, z is the centroid for
all of the samples, Nk denotes the size of cluster k, Sk is the set
of indices of the members of cluster k and znk is the n-th point of
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Fig. 2. Variation of performance with privacy parameter ε and total samples N . Fixed parameters: δ = 0.01, S = 10.
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Fig. 3. Variation of performance with δ. Fixed parameter: S = 10.

the k-th cluster. For the fMRI+EEG data set, we are interested to
see how our algorithm can estimate the correlation between the two
modalities. Therefore, we use the following performance index:

errcorr =
1

K
‖r∗ − r̂∗‖2,

where r∗ ∈ RK and r̂∗ ∈ RK contain the true correlation scores and
the estimated correlation scores between the corresponding modula-
tion profiles of the two modalities. We refer the reader to Correa et
al. [26] for more details. In all cases we show the average perfor-
mance over 10 independent runs of the algorithms.
Privacy-utility trade-offs. First, we explore the privacy-utility
trade-off between the privacy risk ε and the aforementioned per-
formance indices. Recall that the standard deviation of the noise in
capeCCA is inversely proportional to both ε andNs. Larger ε values
indicate higher privacy risk but smaller noise and therefore better
utility. We observe this in our experiments as well. In Figure 2(a)-
(f), we show how the CH index and errcorr vary with ε for MNIST,
XRMB and fMRI+EEG data sets, while keeping δ and S fixed. For
each data set, we show the performance variation with ε for two dif-
ferent sample sizes. In all cases, the proposed capeCCA approaches
the performance of non− priv as we increase ε, outperforming the
conv and local. One of the reasons that capeCCA outperforms conv
is the smaller noise variance at the aggregator that we can achieve
due to the correlated noise scheme. Achieving better performance
than local is intuitive because including the information from mul-
tiple sites to estimate a population parameter always results in a
better performance than using the data from a single site only. For
a particular data set, we notice that if we increase the total sample
size N (and hence the sample size per site Ns), the performance of
capeCCA gets even better. This is expected as the variance of the
noise for capeCCA is inversely proportional to square of Ns.
Learning rates and impact of δ. To better understand the impact of
sample size, we tested the algorithms on data sets of increasing size.

Intuitively, it should be easier to guarantee a smaller privacy risk
for the same ε and a higher utility (lower error) when the number
of samples is large. In Figure 2(g)-(l), we show the performance of
capeCCA as a function of total sample size N for synthetic and real
data sets with different values of ε. Increasing sample size improves
the performance of all algorithms. Again, we observe that even for
small ε values, capeCCA performs nearly as well as non− priv,
comfortably outperforming conv and local. For a particular data
set, increasing ε dictates even better performance. Note that for the
XRMB data set, we plotted the CH index vs. sample size plot with
the replication parameter p.

Finally, we investigate the variation of performance with δ.
Recall that δ can be interpreted as the probability that the privacy-
preserving algorithm releases the private information “out in the
wild”. Therefore, we want δ to be small. However, the smaller the δ
is the larger the noise variance becomes, resulting in loss of utility. In
Figure 3, we show the performance indices as a function of δ for the
synthetic and real data sets. As expected, we observe that increasing
δ results in improved performance. However, choosing a δ ≤ 1

N
may not provide meaningful utility without a sufficiently large ε.
The proposed capeCCA algorithm achieves similar performance as
non− priv for moderate δ values (∼ 0.01).

5. CONCLUSION

In this paper, we proposed an algorithm for distributed differentially-
private CCA. To our knowledge, this is the first algorithm for
privacy-preserving CCA applicable in distributed settings. Our pro-
posed algorithm achieves the same level of privacy-preserving noise
variance, and therefore the same level of utility, as the pooled data
scenario in a distributed setting. We achieved this by employing a
correlated noise design protocol, while assuming the availability of
a helper node. We empirically compared the performance of the
proposed algorithm with that of the non-private, local and conven-
tional distributed algorithms on synthetic and real data sets with
varying privacy and data set parameters. We evaluated the useful-
ness of the produced subspaces for estimating correlation scores and
clustering applications. We observed that the proposed algorithm
offered very good utility even for strong privacy guarantees and
matched the utility of non-private CCA for some parameter choices.
Future work in this direction will be to derive novel utility bounds,
as well as validation on higher-dimensional data with more than two
modalities.
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