
FLEXIBLE NON-NEGATIVE MATRIX FACTORIZATION WITH ADAPTIVELY LEARNED
GRAPH REGULARIZATION

Yong Peng1,2,∗, Yanfang Long1, Feiwei Qin1, Wanzeng Kong1, Feiping Nie3 and Andrzej Cichocki4,1

1 School of Computer Science, Hangzhou Dianzi University, Hangzhou 310018, China
2Guangxi Key Laboratory of Multi-source Information Mining & Security, Guilin 541004, China

3Center for OPTIMAL, Northwestern Polytechnical University, Xi’an 710072, China
4Skolkovo Institute of Science and Technology (SKOLTECH), Moscow 143026, Russia

yongpeng@hdu.edu.cn

ABSTRACT
Non-negative matrix factorization (NMF) is an efficient mod-
el in learning parts-based data representation. Since the local
geometrical structure can be effectively modeled by a near-
est neighbor graph, the graph regularized NMF (GNMF) was
proposed to make the learned representation more faithfully
and better characterize the intrinsic structure of data. How-
ever, GNMF shares a similar paradigm with most of existing
graph-based learning models which perform learning tasks on
a fixed input graph. In this paper, we propose a new Flexi-
ble NMF model with adaptively learned Graph regularization
(FNMFG) in which the graph is jointly learned with simul-
taneous performing the matrix factorization. An efficient it-
erative method with guaranteed convergence and relative low
complexity is developed to optimize the FNMFG objective.
Experiments compare FNMFG method with state-of-the-art
algorithms and demonstrate its improved performance.

Index Terms— Non-negative matrix factorization, adap-
tive graph learning, clustering

1. INTRODUCTION

Matrix factorization techniques are popular to learning effi-
cient representation of high dimensional data in many fields
such as computer vision and data mining [1, 2, 3, 4]. Inspired
by the psychological and physiological research finding that
there exists parts-based representation in human neural sys-
tems, non-negative matrix factorization (NMF) was proposed
to learn the parts-based data representation for pattern recog-
nition [1]. Mathematically, NMF tries to minimize the ap-
proximation error between the target matrix and the product
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of two non-negative factor matrices. The non-negative con-
straint on factor matrices allows only the additive combina-
tions and thus leads to the parts-based representation. A lot
of studies were conducted recently on both new NMF models
and applications [5, 3, 4, 6, 7, 8, 9].

Recent studies have shown that the learning performance
can be significantly enhanced if the geometrical structure of
data can be exploited and suitable regularization implemented
[10, 11, 12, 13]. To incorporate the local invariance idea into
NMF model, Cai et al. proposed the graph regularized NM-
F (GNMF) model in which the data geometrical information
was characterized by a nearest neighbor graph and preserved
by the graph regularization [14]. The underlying justification
of the graph regularization is that the corresponding coeffi-
cient vectors of two data points should be similar if they are
close to each other in data space (e.g., connected in the graph).

Although GNMF provided improved performance in
many applications, it suffers from a drawback that the graph
is constructed by fixed rules such as ‘Heat Kernel’ and ‘0-1’
weighting. It cannot adapt to various data sets, especially
when data is noisy. Therefore, it is meaningful to jointly
learn an adaptive graph from data and use it to regularize the
NMF. In this work, we propose a flexible NMF with adap-
tively learned graph regularization (FNMFG) model in which
we simultaneously perform the graph learning and matrix
factorization tasks. An efficient iterative method with guar-
anteed convergence and relative low complexity is designed
to optimize the FNMFG objective. Extensive experiments
are conducted to demonstrate the excellent performance of
FNMFG. In conclusion we summarize results and indicate
future research directions.

2. THE PROPOSED FNMFG MODEL

2.1. Model Formulation

As shown in [14], the objective of the standard GNMF is

min
U≥0,V≥0

∥X−UVT ∥2 + λTr(VTLV), (1)
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where X ∈ Rd×n, U ∈ Rd×c, V ∈ Rn×c, L = DW −W is
the graph Laplacian matrix corresponding to the affinity ma-
trix W (d is the dimensionality, n is the number of samples,
c is the number of clusters).

For graph-based learning methods, the affinity matrix W
has a significant influence on their performance. Under some
constraints, W can be viewed as a probability matrix. If data
points xi and xj are similar to each other, a large value will be
assigned to wij meaning that xi has a higher probability to be
neighbor of xj . However, the W in GNMF is not an optimal
graph for characterizing the complex intrinsic structure of da-
ta and it may even mislead the subsequent coefficient matrix
learning. In this paper, we propose to learn an optimal graph
S based on the affinity matrix W. That is, we assume that
S will approximate W but with suitable properties and con-
straints including non-negativity, row-sum-to-one and con-
strained rank [15]. The normalization constraint needs the
sum of entries in each row of S to be one. The third constraint
means that the graph Laplacian LS = DS− S+ST

2 should sat-
isfy rank(LS) = n− c, when S is expected to have exactly c
block diagonals. In other words, we formulate the following
optimization problem

min
S1=1,S≥0

∥S−W∥2F , s.t. rank(LS) = n− c. (2)

Since it is difficult to deal with the rank constraint direct-
ly on the graph, we need to reformulate (2) as a tractable one.
Let σi(LS) ≥ 0 be the i-th smallest eigenvalue of LS. Then
the constraint rank(LS) = n − c could be satisfied if the s-
mallest c eigenvalues of LS are zero. Given a large enough
value γ, problem (2) is equivalent to

min
S1=1,S≥0

∥S−W∥2F + γ
∑c

i=1
σi(LS). (3)

According to its definition, NMF can be roughly viewed
as a feature mapping model in which coefficient vector as the
feature of each data point. Ideally, each column of the ba-
sis matrix U can represent the main characteristics of each
cluster and then the coefficient matrix V should have sparse
discriminative structure to be utilized for clustering [16]. Ac-
cording to Ky Fan’s Theorem [17], we can rewrite the rank
constraint in (3) and formulate our proposed flexible GNMF
with adaptive graph learning (FNMFG) model as follows

min
S,U,V

∥S−W∥2F + λ∥X−UVT ∥2F + γTr(VTLSV)

s.t. S ≥ 0, S1 = 1,U ≥ 0,V ≥ 0,VTV = Ic,

where parameter λ controls the approximation error of NMF,
and γ controls how well the coefficient matrix fits the geo-
metrical structure of the data.

2.2. Optimization Procedure

In out approach, we use the alternating direction method (AD-
M) to optimize (4), that is, we update one variable with the
others fixed. Detailed descriptions are given below.

1) Update S. Since S is represented by LS, we need to
decouple the third term in (4), so the objective associated with
S can be written as

min
sij≥0,

∑
j sij=1

n∑
i,j=1

(sij−wij)
2+

γ

2

n∑
i,j=1

∥vi−vj∥2sij . (4)

For each si and wi, we have

min
sij≥0,si1=1

∥si −wi∥22 +
γ

2
sid

T
i , (5)

where si = [si1, · · · , sin] and wi = [wi1, · · · , win] are both
n-dimensional row vectors of S and W, respectively. The j-
th entry of di is ∥vi − vj∥22. Transforming the square form
w.r.t. si, (5) can be rewritten in equivalent form as

min
si≥0,si1=1

∥si − (wi −
γ

4
di)∥22. (6)

This optimization problem can be solved with a closed from
solution by an efficient iterative algorithm [18].

2) Update U. The objective associated with matrix U is
the same as NMF and GNMF. Therefore, we directly have the
standard form of updating rule below.

uik ← (uik(XV)ik)/(UVTV)ik, (7)

3) Update V. In order to eliminate the orthogonal con-
straint, we add a penalty term δ

2∥V
TV− I∥2 in which δ ≫ 0

is a large value (we set it to 107 in our experiments). There-
fore, we have the objective function associated with V as

min
V≥0

λ∥X−UVT ∥2+γTr(VTLSV)+
δ

2
∥VTV−I∥2. (8)

The corresponding Lagrangian function L is

min
V

λ∥X−UVT ∥2+γTr(VTLSV)+
δ

2
∥VTV−I∥2+Tr(ΦTV).

Taking its derivative w.r.t. V and setting it to zero, we have

2λ(XT −VUT )U+ 2γLSV + 2δV(VTV − I) +Φ = 0.

Using KKT condition ϕijvij = 0, we obtain updating of V
as

vij ← vij
(λXTU+ γSV + δV)ij

(λVUTU+ γDSV + δVVTV)ij
. (9)

After updating V, we need to normalize it to satisfy the or-
thogonal constraint VTV = I.

Based on the above analysis, we summarize the optimiza-
tion procedure for FNMFG in Algorithm 1.
2.3. Complexity and Convergence Analysis

The complexity of Algorithm 1 is determined by the loop
which consists of three blocks. We need O(nt1) operations to
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Table 1. Computation operations for each iteration in standard NMF, GNMF and new FNMFG for updating U and V.
fladd flmlt fldiv overall

NMF 2dnc+ 2(d+ n)c2 2dnc+ 2(d+ n)c2 + (d+ n)c (d+ n)c O(dnc)

GNMF 2dnc+ 2(d+ n)c2 + n(p+ 3)c 2dnc+ 2(d+ n)c2 + (d+ n)c+ n(p+ 1)c (d+ n)c O(dnc)

FNMFG 2dnc+ 2(d+ n)c2 + n(n
c
+ 5)c+ 2nc2 2dnc+ 2(d+ n)c2 + (d+ n)c+ n(n

c
+ 1)c+ 2nc2 (d+ n)c O(dnc)

Algorithm 1 Optimization to FNMFG objective in (4).
Input: Data matrix X ∈ Rd×n, given affinity matrix W ∈

Rn×n, parameters λ and γ, and the number of clusters c;
Output: basis matrix U, and coefficient matrix V.

1: Initialize W by ‘Heatkernel’ function in which the band-
width parameter is set as the average of the squared pair-
wise distances, and U, V are initialized randomly;

2: while not converged do
3: Update S by (6);
4: Update U by (7);
5: Update V by (9);
6: end while

obtain the desirable affinity matrix S by an efficient iterative
method in which t1 is the number of iterations of the Newton
method. For the updating rules to U and V, we count the
basic arithmetic operations for NMF, GNMF and FNMFG in
Table 1 where p is the number of nearest neighbors in GN-
MF, fladd, flmlt and fldiv respectively mean the floating-point
addition, floating-point multiplication and floating-point divi-
sion. In GNMF, W is a p-sparse matrix, while S in FNMFG
is an n

c -sparse matrix on average (Each cluster has n
c samples

on average). Considering that typically c ≪ d and d ≪ n,
we have the overall complexity of updating U and V in each
iteration as O(dnc). As a whole, the complexity for FNMFG
is O(t(nt1 + dnc)) where t is the number of iterations.

Regarding the convergence of Algorithm 1, we have the
following theorem.

Theorem 1 The objective of FNMFG in (4) is nonincreasing
under the updating rules in Algorithm 1.

Due to the limited space, we only give some analysis instead
of a strict proof to Theorem 1. Given a fixed point (Ut,Vt), it
is obvious that O(St+1,Ut,Vt) ≤ O(St,Ut,Vt) since the
updating of S can get a closed form solution. The updating
rule to U is exactly the same as that of standard NMF and
GNMF and thus we can use the convergence proof of NMF
to show that O(St+1,Ut+1,Vt) ≤ O(St+1,Ut,Vt). With
St+1 and Ut+1 fixed, by introducing an auxiliary function for
(8) as in [1], we can easily prove thatO(Vt+1) ≤ O(Vt). So
finally, we have O(St+1,Ut+1,Vt+1) ≤ O(St,Ut,Vt).

3. EXPERIMENTS

3.1. Experimental Settings

Six representative benchmark data sets were used in follow-
ing experiments including one object data set (COIL20), three

face image data sets (UMIST, PIE, AR), one text data set (T-
DT2), and one hand written digit data set (MNIST). Table 2
shows the detailed information of these data sets.

In our experiments, we set the number of columns in ba-
sis matrix U to be equal to the number of clusters c. After
obtaining the coefficient matrix V, we perform 20 times K-
means clustering for different starting points and report the
best results. Three metrics, i.e., Accuracy (ACC), Normal-
ized Mutual Information (NMI) and Purity are used to mea-
sure the clustering performance. We compare FNMFG with
K-means, Normalized Cut (NCut), standard NMF [1], con-
cept factorization (CF) [19], GNMF [14] and locally consis-
tent concept factorization (LCCF) [20]. To keep fair compar-
ison, we tune the parameters involved in respective methods
in wide range (10−3 to 103). The best clustering results under
the optimal parameter combination are only reported.

Table 2. Description of Data Sets.
Data set # Samples # Dimensions # Clusters
COIL20 1440 1024 20
UMIST 575 644 20

PIE 2856 1024 68
TDT2 9394 36771 30

AR 700 2580 100
MNIST 4000 768 10

3.2. Experimental Results

The results for all investigated methods on the benchmark da-
ta sets are summarized in Table 3 in which the best result-
s are in boldface. From this table, we have several impor-
tant findings. First, matrix factorization models are efficient
in learning data representation, which delivers better result-
s in most cases of our experiments than directly performing
K-means clustering in the original data space. Second, the
graph regularization in matrix factorization models is more
efficient since the geometrical structure of data is exploited
and the local invariance is imposed. In GNMF and LCCF,
the data geometrical structure is characterized by graph and
the learned coefficient matrix attempts to preserve the data
structure. Therefore, they consistently achieve better results
than the counterparts, NMF and CF. Third, adaptively learn-
ing of an optimal graph from data for matrix factorization
models is better than regularizing the coefficient matrix with
a fixed graph. Existing models such as GNMF and LCCF
construct graph based on predefined rules (i.e., ‘HeatKernel’
function and ‘0-1’ weighting) which may not adapt to com-
plex data structure of different data sets. Our FNMFG method
can jointly perform graph learning and matrix factorization in
which the two sub-objectives can co-evolve to the solution
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Fig. 1. The performance of FNMFG versus variation of parameters λ and γ for COIL20 data set.

close to optimal one. This effectively avoids the limitations
existed in the two-stage strategy employed in most of exist-
ing graph-based learning models, that is, constructing a graph
first and then performing learning process on this fixed graph.

Table 3. Comparison of clustering performance of different
methods on benchmark data sets.

(a) Accuracy (%)

COIL20 UMIST PIE TDT2 AR MNIST
Kmeans 60.67 44.09 24.54 62.88 30.57 51.75

NCut 71.46 50.26 65.30 68.74 39.71 58.63
NMF 61.46 45.57 56.62 69.60 40.14 55.05
CF 57.50 44.52 57.21 66.97 37.29 50.15

GNMF 81.46 62.43 72.37 85.75 43.29 61.18
LCCF 77.92 57.04 64.22 82.17 41.14 60.98

FNMFG 84.31 69.22 79.17 87.30 45.57 62.08

(b) Normalized Mutual Information (%)

COIL20 UMIST PIE TDT2 AR MNIST
Kmeans 71.63 63.77 53.77 71.46 62.85 46.44

NCut 83.55 71.97 83.33 76.61 69.68 61.23
NMF 72.59 64.43 81.71 77.01 68.65 46.83
CF 68.10 60.82 74.57 74.23 65.52 46.73

GNMF 88.63 77.13 88.22 83.99 70.19 59.77
LCCF 85.56 73.37 85.14 81.65 68.95 57.91

FNMFG 91.34 81.54 89.92 85.72 72.31 60.79

(c) Purity (%)

COIL20 UMIST PIE TDT2 AR MNIST
Kmeans 62.87 51.96 28.29 83.70 32.86 55.38

NCut 75.76 61.39 71.11 85.87 40.29 66.90
NMF 63.06 52.70 60.89 87.31 43.57 56.70
CF 60.90 51.65 61.66 85.54 38.97 54.81

GNMF 83.75 69.22 76.86 89.84 46.43 69.98
LCCF 80.42 64.87 70.90 88.43 44.65 68.02

FNMFG 86.60 75.30 82.67 91.43 48.21 71.31

3.3. Parameter Sensitivity and Convergence Study

There are two regularization parameters in our FNMFG al-
gorithm. Concretely, λ controls the approximation error of
matrix factorization and γ controls the adaptation of the co-
efficient matrix V to the geometrical manifold characterized
by the learned graph. Figure 1 shows how the performance
of FNMFG varies in terms of parameters λ and γ. As we can

see, FNMFG is not sensitive to wide variation of them. FNM-
FG can consistently achieve excellent performance even for λ
varies from 10−4 to 10−1 and γ varies from 1 to 100. In FN-
MFG, we assume V to be orthogonal to guarantee more dis-
criminative information which accordingly augments the ap-
proximation error of the second term in (4). Therefore, mini-
mizing the FNMFG objective function will result in a large γ
and a relatively small λ.

To verify the convergence analysis given in section 2.3,
we experimentally show the convergence curves of FNMFG
on example COIL20 and PIE data sets in Figure 2 in which the
x-axis denotes the iteration number and the y-axis is the value
of objective function. We can see the iterative optimization
method implemented in FNMFG has fast convergence speed,
usually within 20 iterations.
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Fig. 2. Convergence curves of FNMFG on COIL20 and PIE.
4. CONCLUSION

In this paper, we proposed a Flexible NMF model regular-
ized by adaptively learned Graph (FNMFG), which can effec-
tively learn an adaptive graph for regularizing the coefficient
factor matrix in NMF. Instead of performing regularization
on a fixed graph, FNMFG successfully avoids the limitations
caused by the two-stage problem in many graph based learn-
ing models. We presented an efficient iterative algorithm to
optimize the FNMFG objective function. Extensive exper-
iments were conducted to demonstrate the superior perfor-
mance of the FNMFG in comparison to the state-of-the-art
methods. In the future work, we will consider extending the
adaptive graph learning into tensor factorization methods.
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