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ABSTRACT

In this paper, we introduce a transfer learning approach for
our novel hybrid brain-computer interface in which elec-
troencephalography and functional transcranial Doppler ul-
trasound are used simultaneously to record brain electrical
activity and cerebral blood velocity respectively due to flick-
ering mental rotation and word generation tasks. We reduced
each trial into a scalar score using Regularized Discrimi-
nant Analysis (RDA). For each individual, class conditional
probabilistic distribution of each mental task was estimated
using RDA scores of the trials corresponding to that men-
tal task. Similarities between class conditional distributions
across individuals were measured using Kullback-Leibler
divergence, Bhattacharyya, and Hellinger distances. Clas-
sification task was performed using Quadratic Discriminant
Analysis (QDA), Linear Discriminant Analysis (LDA), and
Support Vector Machines (SVM). We demonstrate that trans-
fer learning can reduce calibration requirements up to %87.5.
Moreover, it was found that QDA provides the most signif-
icant performance improvement compared to the case when
no transfer learning is employed.

Index Terms— Transfer Learning, Machine Learning,
Electroencephalogram, Functional Transcranial Doppler Ul-
trasound, Hybrid Brain Computer Interfaces.

1. INTRODUCTION

In recent years, transfer learning has been used extensively
to develop classification techniques that utilize previously
acquired data to train a model that will work on unknown
datasets and to improve the generalization performance of
classifiers. These methods mimic human memory to gen-
eralize the acquired knowledge to perform various tasks [1].
Such transfer learning methods have the capability to increase
classification performance when only a small dataset is avail-
able to train a classification model [2],[3]. Noninvasive brain
computer interface (BCI) design is one application domain
that would benefit from such transfer learning approaches.

Non invasive BCIs are designed to help individuals with
neurological deficits or with Limited Speech and Physical
Abilities (LSPA) to communicate with their caretakers with-
out any surgical interventions. Most noninvasive BCIs are

Fig. 1. Stimulus presentation for our flickering MR/WG hy-
brid BCI

based on electroencephalography (EEG) due to its high tem-
poral resolution, portability and low cost. However, since
EEG has low signal-to-noise ratio and EEG demonstrates
nonstationarities due to background brain activities, systems
built based only on EEG suffer from performance degrada-
tions. Hybrid BCI systems are built to overcome the short-
comings of EEG-only BCIs [4]. However the modalities
commonly used to complement EEG for hybrid BCI design
such as functional near-infrared spectroscopy (fNIRS) lack
the speed and accuracy to be used for real-time BCI appli-
cations [5],[6]. In our previous work, we have shown that
functional transcranial Doppler (fTCD) that measured blood
flow in the brain due to different mental activities has tem-
poral resolutions comparable to EEG to complement EEG
for hybrid BCI design and fTCD is robust to nonstationari-
ties due to background brain activities [7],[8]. Moreover we
have shown that such a hybrid BCI based on EEG and fTCD
outperforms BCIs based on EEG and fTCD only [7].

More specifically, the hybrid system we have developed
is based on two different paradigms jointly presented to the
BCI user to induce changes in EEG and fTCD simultaneously,
see Figure 1 [7]. In this figure, there are three visual stimuli:
the letter on the left, the geometric shape on the right and a
cross sign for baseline. Both the letter and geometric shape
images include checkerboards flickering with different fre-
quencies. Therefore, the EEG component of the hybrid BCI
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is based on steady state visual evoked potentials (SSVEPs)
that are recorded in response to these flickering stimuli with
two different frequencies [9],[10],[11]. Moreover, the letter
on the left and the geometric shape on the right instruct the
user to perform word generation (starting with the specific
letter presented on the screen) and mental rotation of the pre-
sented three dimensional geometric shape to induce changes
in the blood flow in two different parts of the brain that are
recorded by fTCD. We have utilized such a visual presenta-
tion paradigm to induce changes in EEG and fTCD simulta-
neously.

Using the system presented in Figure 1, we have per-
formed BCI experiments with 11 healthy participants. Through
these experiments we have developed 3 different binary clas-
sifications including word generation (WG) vs mental ro-
tation (MR), MR vs baseline and WG vs baseline, and we
have shown that hybrid BCI increases the classification ac-
curacy by %5 compared to BCI based on EEG only for the
same tasks [7]. Even though the hybrid system improves the
performance compared to a BCI based on EEG only, such a
hybrid system requires long calibration data (which causes
fatigue especially in target population) to design user specific
classifiers for the BCI operation.

In this paper, we extend our existing system to develop a
novel transfer learning algorithm and to decrease calibration
requirements. The proposed transfer learning method is based
on increasing calibration datasets for each user through iden-
tification of probabilistically similar datasets recorded from
other users. In the proposed method, EEG and fTCD fea-
tures are extracted and class conditional distributions (for the
above mentioned 3 binary classification problems) are com-
puted using kernel density estimation (KDE). Three different
probabilistic distance measures including Bhattacharyya and
Hellinger distances and Kullback-Leibler (KL) divergence are
compared to identify datasets for most accurate transfer learn-
ing. Moreover for final classification (3 binary classification
problems), three different classifiers are compared: Linear
Discriminant Analysis (LDA), Quadratic Discriminant Anal-
ysis (QDA) and support vector machine (SVM). Through our
experimental results, we demonstrate that transfer learning
can reduce the training dataset by up to %87.5. Also we show
that while LDA provides the best classification performance,
QDA demonstrates the highest difference between transfer
learning and no transfer learning.

2. METHODS

In this section, we explain the details of our experimental
setup as well as pre-processing and features extraction stages.
Finally, we introduce our proposed transfer learning algo-
rithm.

2.1. Experimental Setup

EEG signals are collected using 16 electrodes located over
frontal, central, and parietal lobes at the following positions:
Fp1, Fp2, F3, F4, Fz, Fc1, Fc2, Cz, P1, P2, C1, C2, Cp3,
Cp4, Cp5, and P6. The reference electrode is placed over the
left mastoid. A g.tec EEG system equipped with a g.USBamp
amplifier is used for data collection. The data are transferred
to a laptop via USB 2.0.

fTCD data are collected using a SONARA TCD system
via two 2 MHz transducers. These transducers have to be
placed on the left and right sides of the transtemporal window
located above the zygomatic arch [12].

It was found that fTCD can successfully differentiate
mental rotation (MR) and word generation (WG) tasks [7].
However, since the tasks designed for the hybrid BCI system
need to be distinguished by both EEG and fTCD to achieve
high performance, with the aim of inducing SSVEPs in EEG,
MR and WG tasks are modified such that they flicker with
frequencies of 7 and 17 Hz respectively. Moreover, these task
are covered with a checkerboard pattern as shown in Figure
1.

16-channel EEG and 2-channel fTCD data are recorded
simultaneously and synchronized using time stamps obtained
from both modalities. A total of 11 healthy participants with
ages ranging from 23 to 32 years old participated in this ex-
periment under University of Pittsburgh approved IRB. Each
participant attended one session of 25-min duration. During
data collection, each participant is asked to focus on a screen
showing visual icons for flickering MR, flickering WG, and
baseline represented by a fixation cross as shown in Figure
1. A red vertical arrow randomly selects the task to be per-
formed and points to that task for 10 s (trial length). For flick-
ering WG, the participant has to silently generate words start-
ing with the letter shown on the screen. For flickering MR,
the user has to mentally rotate a pair of 3D shapes to decide
if they are identical or mirrored. 150 trials are presented per
session . Assuming equiprobability, about 50 trials were pre-
sented for each task.

2.2. Pre-processing and features extraction

For each individual, EEG and fTCD data of each trial are seg-
mented. For every trial, we consider the power spectrum val-
ues estimated using Welch method [13] as features. Instead
of considering the power spectrum values over all frequency
bins, the number of features is reduced by taking the average
power over a small range of frequencies. In particular, fea-
tures are obtained by taking the average of power over every
2 Hz for EEG data and every 50 Hz for fTCD data as fTCD
has much higher bandwidth (2.5 kHz compared to 40 Hz for
EEG). EEG and fTCD feature vectors are normalized sepa-
rately using min-max normalization [14] and the normalized
EEG and fTCD feature vectors are concatenated into a single
vector that represents each trial.
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2.3. RDA Scores and Similarity Measures

To apply transfer learning , similarity is measured between the
dataset under test and the other datasets collected from other
individuals. KL divergence, Bhattacharyya, and Hellinger
[15] are used to measure similarity across individuals. Instead
of measuring similarity directly using EEG and fTCD con-
catenated feature vectors, these feature vectors are reduced
using RDA [16] [17] into scalar RDA scores. For each binary
classification problem, both RDA parameters, λ controlling
the degree of shrinkage and γ the regularization parameter,
are optimized via 10-fold cross-validation such that the area
under the receiver operating characteristic curve is maximum.
λ and γ are ranging from 0.1 to 1 with a step of 0.1. Using
the RDA scores of the trials corresponding to each class, the
conditional pdfs are estimated. Rbf kernel is used for KDE
and the kernel bandwidth is estimated based on Silverman’s
rule of thumb. The similarities between the pdf of the dataset
under test and the pdfs of the other datasets are computed.
Five datasets which are most similar to the dataset under test
are chosen for transfer learning.

2.4. Classification

Three classification problems are formulated based on the
data available from the hybrid BCI system including WG
vs MR, WG vs baseline (WG vs BL), and MR vs baseline
(MR vs BL). To perform the classification, different classi-
fiers are used including linear discriminant analysis (LDA),
quadratic discriminant Analysis (QDA), and linear support
vector machine (SVM). The performance of these classifiers
is discussed in details in the results section.

2.5. Transfer learning algorithm

In this study, we develop a transfer learning algorithm to re-
duce the training requirements of the SSVEP hybrid BCI sys-
tem that utilizes both EEG and fTCD modalities. The pseu-
docode of the proposed transfer learning approach is given in
Algorithm 1.

For each participant, we find the five most similar datasets
using the different distance measures mentioned in section
2.3. In particular, to determine the similarity, we use KDEs
of class conditional distributions of the scores obtained from
the RDA projection of EEG and fTCD features. For each par-
ticipant, given a number of t test trials and N − t training
trials, with N the total number of trials, participant’s dataset
is divided into testing and training sets of size t and N − t
respectively. Then, KDE of RDA scores of training trials for
the participant under test is compared with KDEs of other
participants to determine the most similar five datasets. Then,
each participant's training set is then augmented with the most
similar 5 datasets. As we aim to study the effect of transfer
learning at different training and test sizes, we apply the pro-
posed algorithm at t ranging from 10 to 90 trials which means

Table 1. Mean of accuracy among all participants and corre-
sponding sensitivity and specificity for WG vs MR.

Performance
measures

LDA QDA SVM
NT TL NT TL NT TL

Accuracy 0.8033 0.8533 0.79 0.8622 0.8178 0.8544
Specificity 0.8698 0.8298 0.8419 0.8234 0.8930 0.8362
Sensitivity 0.7426 0.8791 0.7426 0.9047 0.7489 0.8744

the minimum training size is 10 samples.

3. RESULTS

For each participant, we first utilize KL divergence, and Bhat-
tacharyya and Hellinger distances to identify the datasets to
be used for transfer learning for that specific participant.
Through transfer learning (TL) we study the reduction in
training size requirements compared to no transfer learning
case (NT) for the above mentioned three binary classifica-
tion problems. More specifically, we perform a one sided
Wilcoxon rank test [18] between accuracy obtained with TL
with a minimum size of N − t = 10 training trials and ac-
curacy obtained with NT with a number a training trials in
the range 20 to 90 trials. The same test is repeated for each
size of NT. An identical statistical comparison is applied for
the different distance measures. When TL is performed with
10 trials, the statistical test shows that the performance for
TL using Bhattacharyya distance is comparable to the perfor-
mance for NT at a size of 80 trials. It means that instead of
running the algorithm with 80 training trials without trans-
fer, the system gives higher or at least same performance
when using only 10 training trials for TL. Similar analysis
shows that around 60 trials are needed for TL to obtain iden-
tical performance as NT when KL divergence and Hellinger
distance are used for dataset identification for TL. Since
Bhattacharyya provides the best results for the reduction of
training set requirements through TL, in the remaining of
this paper we present the classification performances for the
three binary classifications provided through Bhattacharrya
distance based transfer learning.

Considering a test and a training size of t = 90 and N −
t = 10 trials respectively, accuracy, specificity, and sensitivity
for the three classifiers are given in Tables 1, 2, and 3 with and
without transfer learning for MR vs WG, MR vs BL and WG
vs BL. The results are presented for an optimal trial length Ts
chosen between 1 and 10 s. From Table 1, 2, and 3, we ob-
serve that all TL classification results are higher than the NT
results for MR vs WG, MR vs BL, and WG vs BL classifica-
tions. LDA provides the best classification performance for
MR vs BL and WG vs BL classification problems with corre-
sponding accuracies of %82.22 and %75.89 respectively. On
the other hand, QDA provides slightly higher performance
compared to LDA for the MR vs WG classification. Finally,
when the difference between the TL and NT cases are consid-
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Fig. 2. Accuracy as a function of the number of trials in the
training set for each binary problem with and without transfer.

ered, QDA provides the highest improvement for all the clas-
sification problems. Moreover, we compare results obtained
from TL and NT when QDA is used as a classifier. Figure 2
shows the accuracies (optimal accuracies averaged across in-
dividuals) obtained for a number of training trials from 10 to
90 for MR vs WG, MR vs BL, and WG vs BL. The results aim
to show the influence of the quantity of information available
to train a classifier as well as the effect of the calibration data
size on the classification accuracy with and without transfer.
For each size of training set, performance obtained with TL is
greater than without transfer for all classification problems.

4. CONCLUSION

With the aim of reducing the BCI calibration requirements,
we developed a transfer learning algorithm for our novel hy-
brid BCI system that exploits data acquired from EEG (based
on SSVEP) and fTCD (based on WG and MR) modalities
simultaneously to infer user intent. To measure similarity
across subjects, for every individual, each trial was projected
into a scalar RDA score. These scores were used to esti-
mate a class conditional distribution per each mental task.
Similarities between class conditional distributions were mea-
sured across subjects using 3 different distance measures. It
was found that the proposed transfer learning approach not
only reduces the calibration requirements but also improves
performance of all classifications problems including MR vs
WG, MR vs BL, and WG vs BL. In particular, we show that
LDA obtained the highest possible performance compared to
SVM and QDA. In term of the difference between accuracy
achieved using transfer learning and accuracy obtained with-
out transfer learning, the highest difference was provided by
QDA. In terms of calibration requirements, experimental re-
sults indicate that the size of the training set can be reduced
by up to %87.5 using Bhattacharyya distance as a similarity
measure.

for each binary classification problem do
for each distance measure D do

Accuracy=(); Specificity=(); Sensitivity=();
for Ts = 1 : 10
// Segment length (s) do

for n = 1 : 10 // participants do
Ni = number of trials from class i,
i = 1, 2;

N=N1+N2;
Estimate power spectrum features;
Get RDA scores si =

{
s1, ..., sNi

}
for

class i;
Estimate Pn(s

i|xi) using KDE;
end
for n = 1 : 10 do

Get distance between Pn(s
i|xi) and

Pm(si|xi) for m =
{
1, ..., 10

}
-
{
n
}

;
Select top similar 5 datasets to

participant n;
T =

[
Tn
E , T

n
R,
]
;

Tn
E : testing trials for participant n;
Tn
R: training trials for participant n;

for Tn
E = 10 : 10 : 90 do

Train the classifier using
[
Tn
R, T

l
R

]
,

l ⊂ m contains indexes
corresponding to top similar 5
datasets;

Test the model using Tn
E ;

Compute performance measures;
end

end
end

end
end

Algorithm 1: Pseudocode for the proposed transfer learn-
ing approach.

Table 2. Mean of accuracy among all participants and corre-
sponding sensitivity and specificity for MR vs BL.

Performance
measures

LDA QDA SVM
NT TL NT TL NT TL

Accuracy 0.7778 0.8222 0.7233 0.8167 0.7856 0.8122
Specificity 0.7750 0.8720 0.74 0.8580 0.7550 0.86
Sensitivity 0.78 0.76 0.71 0.7650 0.81 0.7525

Table 3. Mean of accuracy among all participants and corre-
sponding sensitivity and specificity for WG vs BL.

Performance
measures

LDA QDA SVM
NT TL NT TL NT TL

Accuracy 0.72 0.7589 0.66 0.7389 0.7111 0.7511
Specificity 0.6550 0.8120 0.50 0.7820 0.6175 0.8140
Sensitivity 0.7720 0.6925 0.7880 0.6850 0.7860 0.6725
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