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ABSTRACT

We model the sampling and recovery of clustered graph sig-
nals as a reinforcement learning (RL) problem. The signal
sampling is carried out by an agent which crawls over the
graph and selects the most relevant graph nodes to sample.
The goal of the agent is to select signal samples which al-
low for the most accurate recovery. The sample selection is
formulated as a multi-armed bandit (MAB) problem, which
lends naturally to learning efficient sampling strategies using
the well-known gradient MAB algorithm. In a nutshell, the
sampling strategy is represented as a probability distribution
over the individual arms of the MAB and optimized using
gradient ascent. Some illustrative numerical experiments in-
dicate that the sampling strategies obtained from the gradient
MAB algorithm outperform existing sampling methods.

Index Terms— machine learning, reinforcement learn-
ing, multi-armed bandit, graph signal processing, total vari-
ation.

1. INTRODUCTION

Modern information processing systems generate massive
datasets which are typically heterogeneous partially labeled
mixtures of different data types (audio, video, text). A suc-
cessful approach to machine learning problems involving
such datasets is based on exploiting their intrinsic network
structure. In particular, we represent datasets by graph signals
defined over an undirected graph, which reflects similarities
between individual data points. The graph signal values en-
code label information which often conforms to a clustering
hypothesis, i.e., the signal values (labels) of close-by nodes
(similar data points) are similar. This graph signal represen-
tation allows using tools from graph signal processing (GSP)
to data science or machine learning problems.

Two core problems within GSP are (i) how to efficiently
sample graph signals, i.e., which signal values provide the
most information about the entire dataset, and (ii) how to re-
cover the entire graph signal from few signal values (sam-
ples). These problems have been studied in [1–6] which dis-
cussed convex optimization methods for recovering a graph
signal from a small number of signal values observed on the
nodes belonging to a given (small) sampling set. Sufficient
conditions on the sampling set and clustering structure such

that these convex methods are successful have been discussed
in [4, 7]. In addition to this, the study [8] investigates perfor-
mance of several graph sampling algorithms, such as uniform
random sampling and experimentally designed sampling. An-
other research [9] addresses sampling in the frequency do-
main using discrete Fourier transform of a graph. Greedy
sampling algorithm [10] tries to find near-optimal global so-
lution by following the sequence of locally optimal decisions.

Contribution. In contrast to currently existing sampling
methods, we propose a novel adaptive approach to the graph
signal sampling by interpreting it as RL problem. In partic-
ular, we interpret online sampling algorithm as an artificial
intelligence agent which chooses the nodes to be sampled on-
the-fly. The behavior of the sampling agent is represented by
a probability distribution (“policy”) over a discrete set of dif-
ferent actions which are at the disposal of the sampling agent
in order to choose the next node at which the graph signal
is sampled. The ultimate goal is to learn a sampling policy
which chooses signal samples that allow for a small recon-
struction error.

Notation. The vector with all entries equal to zero is de-
noted 0. Given a vector x with non-negative entries, we de-
note by

√
x the vector whose entries are the square roots of

the entries of x. Similarly, we denote the element-wise square
of the vector as x2.

2. PROBLEM FORMULATION

We consider networked datasets which are represented by an
empirical graph G = (V, E). The empirical graph is a sim-
ple undirected graph with nodes V = {1, . . . , N}, which are
connected by edges {i, j} ∈ E . Without loss of generality we
consider datasets whose empirical graph is connected. How-
ever, our results can be easily extended to datasets whose em-
pirical graph consists of several components. Each node i ∈
V represents an individual data point and an edge {i, j} ∈ E
connects nodes representing similar data points. The distance
dist(i, j) between nodes i, j ∈ V is defined as the length of
the shortest path between them. The neighbourhood of node
i is

N (i) := {j ∈ V : {i, j} ∈ E}.
It will be handy to generalize the notion of neighbourhood
and define, for some r ∈ N, the r-step neighbourhood of a
node i ∈ V as N (i, r) := {j ∈ V : dist(i, j) = r}. The
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1-step neighbourhood coincides with the neighbourhood of a
node: N (i, 1) = N (i).

Besides the network structure, encoded in the empirical
graph, datasets typically contain additional information in the
form of labels x[i] ∈ R assigned to each data point i ∈ V .
These labels induce a graph signal x : V → R defined over
the empirical graph G. We aim at recovering a graph signal x
based on observing its values x[i] only for nodes i belonging
to a sampling set

M := {i1, . . . , iM} ⊆ V.

Since acquiring signal values (labelling data points) is often
expensive (requiring manual labor), the sampling set is typi-
cally much smaller than the overall dataset, i.e.,M = |M| �
N . For a fixed sampling set size (sampling budget) M we
want to choose the sampling set such that the signal samples
{x[i]}i∈M carry maximal information about the entire graph
signal.

The recovery of the entire graph signal from (few) sig-
nal samples {x[i]}i∈M is possible for clustered graph signals
which do not vary too much over well-connected subsets of
nodes (clusters) [4, 11]. We quantify how well a graph sig-
nal conforms with the cluster structure of G using the total
variation (TV)

‖x‖TV :=
∑

{i,j}∈E

|x[j]−x[i]|.

Recovering a clustered graph signal from the signal samples
x[i], for i ∈M, can be accomplished by solving

x̂M∈arg min
x̃

‖x̃‖TV s.t. x̃[i]=x[i] for all i∈M. (1)

This is a convex optimization problem with a non-differentiable
objective function which precludes the use of simple gradient
descent methods. However, the problem (1) has a particular
structure which allows us to apply an efficient primal-dual
optimization method [11, 12].

A simple but useful model for clustered graph signals is:

x =
∑
C∈F

aCtC , (2)

with the cluster indicator

tC [i] =

{
1, if i ∈ C
0 else.

The partition F underlying the signal model (2) can be cho-
sen arbitrarily in principle. However, our methods are ex-
pected to be most useful for clustered signals of the form (2)
with a partition that matches intrinsic cluster structure of the
empirical graph G. In particular, if the underlying partition
F = {C1, . . . , C|F|} consists of disjoint clusters Cl with small
cut-sizes graph signals of the form (2) will have a small TV
‖x‖TV which is favorable for the recovery method (1).

it

N (it, 1) N (it, 2) N (it, 3)

Fig. 1: The filled node represents the current location it of
the sampling agent at time t. We also indicate the 1-, 2- and
3-step neighbourhoods.

3. SIGNAL SAMPLING AS REINFORCEMENT
LEARNING

We consider the selection of the nodes to be sampled be-
ing carried out by an “agent” which crawls over the empir-
ical graph G. At each time step the agent can choose one
of a finite number of H actions which we collect in the set
A = {1, ...,H}.

At a given time step t, the sampling agent chooses an
action a ∈ A which refers to the number of hops the sam-
pling agent performs starting at the current node it to reach a
new node it+1, which will be added to the sampling set, i.e.,
M := M∪ {it+1}. In particular, the new node it+1 is se-
lected uniformly at random among the nodes which belong to
its a-step neighbourhood N (it, at) (see Figure 1).

The problem of optimally selecting actions at can be for-
mulated as a MAB problem. Action a ∈ A corresponds to
one arm of a hypothetical MAB machine. In our setup, a
sampling strategy (or policy) amounts to specifying a prob-
ability distribution over the individual actions a ∈ A. We
parametrize this probability distribution with a weight vector
w = (w1, . . . , wH)T ∈ RH using the softmax rule:

π(w)(a) =
ewa∑

b∈A
ewb

(3)

The weight vector w is tuned in the episodic manner with
each episode amounting to selecting sampling setM based on
the policy π(w). At each timestep t the agent randomly draws
an action at according to the distribution π(w) and performs
transition to the next node it+1 which is selected uniformly at
random from the at-step neighbourhood N (it, at). As men-
tioned earlier, the node tt+1 is added to the sampling set, i.e.,
M :=M∪ {it+1}. We also record the action at and add it
to the action list, i.e., L := L ∪ {at}. The process contin-
ues until we obtain a sampling setM with the prescribed size
(sampling budget) M .

We aim at learning a policy π(w) that selects a sampling
setM which allows for accurate recovery of the entire clus-
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tered graph signal. The quality of the sampling set is mea-
sured by the mean squared error (MSE) obtained when recov-
ering the graph signal using (1):

MSE := (1/N)
∑
j∈V

(x[j]− x̂M[j])2

Consequently, the rewardR of our RL agent can be expressed
using MSE as follows:

R := −MSE (4)

In (4) we note that the reward is larger when MSE is smaller,
which encourages the agent to select a sampling set minimiz-
ing MSE of graph signal recovery.

The obtained reward is associated with all actions/arms
which contributed to picking samples into sampling set dur-
ing the episode. For example, if the sampling set has been
obtained by pulling arms 1, 2 and 5, the obtained reward will
be associated with all these arms, because we do not know
what is the exact contribution of the specific arm to the finally
obtained reward.

The key idea behind gradient MAB is to adjust the
weights w in the parametrization of π(w) (see (3)) so that
the actions yielding higher rewards become more probable
under π(w) [13, Chapter 2.8]. This is accomplished using a
gradient ascent algorithm:

wa :=

{
wa + αR(1− π(a)), a = ak

wa − αRπ(a),∀a 6= ak

for k = 1..M − 1, a ∈ A, ak ∈ L
(5)

The main difference between update rule (5) and [13, Eq.
2.12] is that in our case weights update is performed in the
end of each episode and not after an arm pull. That is be-
cause we do not know reward immediately after pulling an
arm and should wait until the whole sampling set is col-
lected and reward is observed. The intuition behind the
update equation (5) is that for each arm which has partic-
ipated in picking a node into sampling set (a = ak), the
weight is increased, whereas weights wa of the remaining
arms (∀a 6= ak) are decreased. In both cases, the amount
of weight increase/decrease is scaled by the reward obtained
with help of this arm as well as by the learning rate α. For
faster convergence we use mini-batch gradient ascent in com-
bination with RMSprop technique [14] (see Algorithm 1 for
implementation details). Obtained probability distribution
π(w) represents sampling strategy which incurs the minimum
reconstruction MSE when using the convex recovery method
(1).

4. NUMERICAL RESULTS

Using synthetic networked data, we compare the perfor-
mance of Algorithm 1 with two other existing approaches,
i.e., random walk sampling (RWS) [15] and uniform random
sampling (URS) [16, Section 2.3]. We generate an empirical

Algorithm 1 Online sampling and reconstruction

Input: graph G, sampling budget M , batch size B, α
Initialize: w := 0,∇w = 0,g = 0, ep = 0

1: repeat
2: select starting node i ∈ V randomly
3: M := {i}
4: L = {∅}
5: for t := 1; t < M do
6: draw action a from the distribution π(w)

7: draw inext from a-step neighbourhood N (i, a)
8: M :=M∪ {inext}
9: L := L ∪ {a}

10: i := inext
11: end for
12: x̂∈arg min

x̃
‖x̃‖TV, s.t. x̃[i]=x[i] for all i∈M

13: R := −(1/N)
∑
j∈V

(x[j]− x̂[j])2

14: for k := 1; k < M do
15: for a := 1; a 6 H do

16: ∇wa :=

{
∇wa +R(1− π(a)), if a = L[k]
∇wa −Rπ(a), otherwise

17: end for
18: end for
19: ep := ep+ 1
20: if ep mod B = 0 then
21: g := 0.9g + 0.1(∇w)2

22: w := w + α∇w/√g
23: ∇w := 0
24: end if
25: until convergence is reached
Output: π(w)

graph using a stochastic block model [17] with 10 clusters.
The cluster sizes are drawn from a geometric distribution with
success probability 8/100. The intra- and inter-cluster con-
nection probabilities are chosen as p = 7/10 and q = 1/100.
We then generate a clustered graph signal according to (2)
with the signal coefficients aCl

= l for l = 1, 2, ..., 10. In
Figure 2, we depict a single realization of the specified above
probabilistic model for the empirical graph G.

We would like the agent to learn a policy which would
allow sampling arbitrary graph instance conforming with the
probabilistic model of the graph G. However, if the agent
learns a policy based only on one graph realization, the ob-
tained policy may be biased towards this particular training
instance and will not be able to generalize sampling strategy
for the whole probabilistic model. In order to deal with this
overfitting problem we generate K = 500 random graph re-
alizations and for each one find policy π(w)

k by running Algo-
rithm 1 for 10000 episodes, which is sufficient to reach con-
vergence (see Figure 3). We then average the policies π(w)

k
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Fig. 2: Empirical graph obtained from the stochastic block
model with p = 7/10 and q = 1/100.
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Fig. 3: Convergence of gradient MAB for one realization G(k)
(showing first 3700 episodes).

obtained for the individual realizations G(k):

π(w) := (1/K)

K∑
k=1

π
(w)
k (6)

The finally obtained policy (6) (see Figure 4) now gener-
alizes sampling strategy for the probabilistic model of graph
G and can be used to sample arbitrary graph realization which
conforms to this probabilistic model. We evaluate (6) by ap-
plying it to 500 new i.i.d. realizations of the empirical graph,
yielding the sampling setsM(i), i = 1, . . . , 500, and measur-
ing the normalized mean squared error (NMSE) incurred by
graph signal recovery from those sampling sets:

NMSEGi
:=
‖x̂(i) − x(i)‖22
‖x(i)‖22

NMSE := (1/500)

500∑
i=1

NMSEGi

We perform similar measurements of the NMSE for ran-
dom walk and random sampling algorithms under different
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Fig. 4: Average policy for the probabilistic model of the em-
pirical graph G.
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Fig. 5: Test set error obtained from graph signal recovery
based on different sampling strategies.

sampling budgets and convert results to the logarithmic scale.
From Figure 5 we obtain that for relative sampling budget
0.2 improvement in NMSE amounts to 5 dB in comparison to
random sampling and 10 dB in comparison to random walk
approach. This gap increases even more for the sampling bud-
get 0.4, to 8 dB and 20 dB respectively.

5. CONCLUSIONS

We have proposed a novel approach to graph signal process-
ing based on interpreting graph signal sampling and recovery
as a RL problem. Using this interpretation lends naturally to
an online sampling strategy which is based on determining
an optimal policy which minimizes MSE of graph signal re-
covery. The proposed approach has been tested on a synthetic
dataset generated in accordance to the stochastic block model.
Obtained experimental results have confirmed effectiveness
of the proposed sampling algorithm in the stochastic settings
and demonstrated its advantages over existing approaches.
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